7
Views
8
CrossRef citations to date
0
Altmetric
Chromosome Structure and Dynamics

Expression of the Yeast PHR1 Gene Is Induced by DNA-Damaging Agents

, &
Pages 4630-4637 | Received 07 Mar 1990, Accepted 18 Jun 1990, Published online: 31 Mar 2023

Literature Cited

  • Angel, P., I. Baumann, B. Stein, H. Deltas, H. J. Rahmsdorf, and P. Herrlich. 1987. 12-0-Tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5′-flanking region. Mol. Cell. Biol. 7:2256-2266.
  • Angel, P., A. Poting, U. Mallick, H. J. Rahmsdorf, M. Schorpp, and P. Herrlich. 1986. Induction of metallothionein and other mRNA species by carcinogens and tumor promoters in primary human skin fibroblasts. Mol. Cell. Biol. 6:1760-1766.
  • Angel, P., H. J. Rahmsdorf, A. Poting, and P. Herrlich. 1985. c-fos mRNA levels in primary human fibroblasts after arrest in various stages of the cell cycle. Cancer Cells 3:315-319.
  • Baker, Τ. Ι. 1983. Inducible nucleotide excision repair in Neurospora. Mol. Gen. Genet. 190:295-299.
  • Bardwell, L., H. Burtscher, W. A. Weiss, C. M. Nicolet, and E. C. Friedberg. 1990. Characterization of the RADIO gene of Saccharomyces cerevisiae and purification of the Rad10 protein. Biochemistry 29:3119-3126.
  • Barker, D. G., J. H. M. White, and L. H. Johnston. 1985. The nucleotide sequence of the DNA ligase gene (CDC9) from Saccharomyces cerevisiae: a gene which is cell-cycle regulated and induced in response to DNA damage. Nucleic Acids Res. 13:8323-8337.
  • Bell, G. I., L. J. DeGennaro, D. H. Gefland, R. J. Bishop, P. Valenzuela, and W. J. Rutter. 1977. Ribosomal RNA genes of Saccharomyces cerevisiae. I. Physical map of the repeating unit and the locations of the regions coding for 5 S, 5.8 S, 18 S, and 25 S ribosomal RNAs. J. Biol. Chem. 252:8118-8125.
  • Cole, G. M., and R. K. Mortimer. 1989. Failure to induce a DNA repair gene, RAD54, in Saccharomyces cerevisiae does not affect DNA repair of recombination phenotypes. Mol. Cell. Biol. 9:3314-3322.
  • Cole, G. M., D. Schild, S. T. Lovett, and R. K. Mortimer. 1987. Regulation of rad54- and RAD52-lacZ gene fusions in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol. 7:1078-1084.
  • Cornells, J. J., Z. Z. Su, and J. Rommelaere. 1982. Direct and indirect effects of UV light on the mutagenesis of provirus H-l in human cells. Proc. Natl. Acad. Sci. USA 75:2378-2381.
  • Couto, L. B., and E. C. Friedberg. 1989. Nucleotide sequence of the wild-type RAD4 gene of Saccharomyces cerevisiae and characterization of mutant rad4 alleles. J. Bacteriol. 171:1862-1869.
  • DasGupta, U. B., and W. C. Summers. 1978. Ultraviolet reactivation of herpes simplex virus is mutagenic and inducible in mammalian cells. Proc. Natl. Acad. Sci. USA 75:2378-2381.
  • Eckhardt, F., E. Moustacchi, and R. H. Haynes. 1978. On the inducibility of error-prone repair in yeast, p. 421-423. In P. Hanawalt, E. Friedberg, and C. Fox (ed.), DNA repair mechanisms. Academic Press, Inc., New York.
  • Elledge, S. J., and R. W. Davis. 1987. Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol. Cell. Biol. 7:2783-2793.
  • Elledge, S. J., and R. W. Davis. 1989. Identification of the DNA damage-responsive element of RNR2 and evidence that four distinct cellular factors bind it. Mol. Cell. Biol. 9:5373-5386.
  • Finley, D., E. Ozkaynak, and A. Varshavsky. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035-1046.
  • Fleer, R., C. M. Nicolet, G. A. Pure, and E. C. Friedberg. 1987. RAD4 gene of Saccharomyces cerevisiae: molecular cloning and partial characterization of a gene that is inactivated in Escherichia coli. Mol. Cell. Biol. 7:1180-1192.
  • Fornace, A. J., Jr., I. Alamo, Jr., and M. C. Hollander. 1988. DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. USA 85:8800-8804.
  • Fornace, A. J., Jr., D. W. Nebert, M. C. Hollander, J. D. Luethy, M. Papathanasiou, J. Fargnoli, and Ν. Κ. Holbrook. 1989. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol. 9:4196-4203.
  • Friedberg, E. C. 1988. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 52:70-102.
  • Fukui, Τ., Η. Kotaro, and Y. Matsudaira. 1978. Light-flash analysis of the photoenzymatic repair process in yeast cells. I. Determination of the number of photoreactivating enzyme molecules. Mutat. Res. 51:435-439.
  • Fukui, Α., and W. Laskowski. 1984. Modifying factors of the cellular concentration of photolyase molecules in Saccharomyces cerevisiae. I. Effects of temperature and light. Photochem. Photobiol. 39:613-617.
  • Fukui, Α., and W. Laskowski. 1984. Modifying factors of the cellular concentration of photolyase molecules in Saccharomyces cerevisiae. II. Effects of preillumination with light flashes. Photochem. Photobiol. 40:227-230.
  • Fukui, Α., and W. Laskowski. 1985. Light-illumination effects on the cellular concentration of photolyase molecules in yeast. Radiat. Environ. Biophys. 24:251-258.
  • Hinnen, Α., J. B. Hicks, and G. R. Fink. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929-1933.
  • Hittleman, W. N., and P. N. Rao. 1974. Bleomycin-induced damage in prematurely condensed chromosomes and its relationship to cell cycle progression in CHO cells. Cancer Res. 34:3433-3439.
  • Holliday, R. 1975. Further evidence for an inducible recombination repair system in Ustilago maydis. Mutat. Res. 29:149-153.
  • Hurd, Η. Κ., and J. W. Roberts. 1989. Upstream regulatory sequences of the yeast RNR2 gene include a repression sequence and an activation site that binds the Rapl protein. Mol. Cell. Biol. 9:5359-5372.
  • Jentsch, S., J. P. McGrath, and A. Varshavsky. 1987. The DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature (London) 329:131-134.
  • Johnson, A. L., D. G. Barker, and L. H. Johnston. 1986. Induction of yeast DNA ligase genes in exponential and stationary phase cultures in response to DNA damaging agents. Curr. Genet. 11:107-112.
  • Johnson, J. L., S. Hamm-Alvarez, G. Payne, G. B. Sancar, K. V. Rajagopalan, and A. Sancar. 1988. Identification of the second chromophore of Escherichia coli and yeast photolyase as 5,10-methenyltetrahydrofolate. Proc. Natl. Acad. Sci. USA 85:2046-2050.
  • Johnston, L. H., J. H. M. White, A. L. Johnson, G. Lucchini, and P. Plevani. 1987. The yeast DNA polymerase I transcript is regulated in both the mitotic cell cycle and in meiosis and is also induced after DNA damage. Nucleic Acids Res. 15:5017-5030.
  • Kupiec, M., and G. Simchen. 1985. Arrest of the mitotic cell cycle and of meiosis in Saccharomyces cerevisiae by MMS. Mol. Gen. Genet. 201:558-564.
  • Larimer, F. W., J. R. Perry, and A. A. Hardigree. 1989. The REV1 gene of Saccharomyces cerevisiae: isolation, sequence, and functional analysis. J. Bacteriol. 171:230-237.
  • Lee, M. G., and G. T. Yarranton. 1982. Inducible DNA repair in Ustilago maydis. Mol. Gen. Genet. 185:245-250.
  • Madura, K., and S. Prakash. 1986. Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae. J. Bacteriol. 166:914-923.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • McClanahan, T., and K. McEntee. 1984. Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol. 4:2356-2363.
  • McClanahan, T., and K. McEntee. 1986. DNA damage and heat shock dually regulate genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:90-96.
  • Mcintosh, E. M., and R. H. Haynes. 1986. Isolation, sequence and expression of the dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae. Mol. Cell. Biol. 6:1711-1721.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mitchell, R. E. J., and D. P. Morrison. 1983. Heat shock induction of ultraviolet light resistance in Saccharomyces cerevisiae. Radiat. Res. 96:95-99.
  • Mitchell, R. E. J., and D. P. Morrison. 1984. Is DNA damage the signal for induction of thermal resistance? Induction by radiation in yeast. Radiat. Res. 99:383-393.
  • Morrison, Α., R. B. Christensen, J. Alley, A. K. Beck, E. G. Bernstine, J. F. Lemontt, and C. W. Lawrence. 1989. REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J. Bacteriol. 171:5659-5667.
  • Myers, M., A. Tzagoloff, D. M. Kinney, and C. J. Lusty. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299-310.
  • Nicolet, C. M., J. M. Chenevert, and E. C. Friedberg. 1985. The RAD2 gene of Saccharomyces cerevisiae: nucleotide sequence and transcript mapping. Gene 36:225-234.
  • Parker, R. C., R. M. Watson, and J. Vinograd. 1977. Mapping of closed circular DNAs by cleavage with restriction endonucleases and calibration by agarose gel electrophoresis. Proc. Natl. Acad. Sci. USA 74:851-855.
  • Perozzi, G., and S. Prakash. 1986. RAD7 gene of Saccharomyces cerevisiae: transcripts, nucleotide sequence analysis, and functional relationship between the RAD7 and RAD23 gene products. Mol. Cell. Biol. 6:1497-1507.
  • Peterson, Τ. Α., L. Prakash, S. Prakash, M. A. Osley, and S. I. Reed. 1985. Regulation of CDC9, the Saccharomyces cerevisiae gene that encodes DNA ligase. Mol. Cell. Biol. 5:226-235.
  • Pizzagalli, Α., Ρ. Valsasnini, P. Plevani, and G. Lucchini. 1988. DNA polymerase I gene of Saccharomyces cerevisiae: nucleotide sequence, mapping of a temperature-sensitive mutation, and protein homology with other DNA polymerases. Proc. Natl. Acad. Sci. USA 85:3772-3776.
  • Prentki, P., F. Karch, S. Iida, and J. Meyer. 1981. The plasmid cloning vector pBR325 contains a 482 base-pair-long inverted duplication. Gene 14:289-299.
  • Reynolds, P., L. Prakash, D. Dumais, G. Perozzi, and S. Prakash. 1985. Nucleotide sequence of the RADIO gene of Saccharomyces cerevisiae. EMBO J. 4:3549-3552.
  • Robinson, G. W., C. M. Nicolet, D. Kalainov, and E. C. Friedberg. 1986. A yeast excision-repair gene is inducible by DNA damaging agents. Proc. Natl. Acad. Sci. USA 83:1842-1846.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202-11.
  • Ruby, S. W., and J. W. Szostak. 1985. Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damaging agents. Mol. Cell. Biol. 5:75-84.
  • Ruby, S. W., J. W. Szostak, and A. W. Murray. 1983. Cloning regulated yeast genes from a pool of lacZ fusions. Methods Enzymol. 101:253-268.
  • Sancar, Α., and G. B. Sancar. 1987. DNA repair enzymes. Annu. Rev. Biochem. 57:29-67.
  • Sancar, G. B. 1985. Expression of a Saccharomyces cerevisiae photolyase gene in Escherichia coli. J. Bacteriol. 161:769-771.
  • Sancar, G. B. 1985. Sequence of the Saccharomyces cerevisiae PHR1 gene and homology of the PHRl photolyase to E. coli photolyase. Nucleic Acids Res. 13:8231-8246.
  • Sancar, G. B., and F. W. Smith. 1988. Construction of plasmids which lead to overproduction of yeast PHRl photolyase in Saccharomyces cerevisiae and Escherichia coli. Gene 64:87-96.
  • Sancar, G. B., and F. W. Smith. 1989. Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol. Cell. Biol. 9:4767-4776.
  • Sancar, G. B., F. W. Smith, and P. F. Heelis. 1987. Purification of the yeast PHRl photolyase from an E. coli overproducing strain and characterization of the intrinsic chromophores of the enzyme. J. Biol. Chem. 262:15457-15465.
  • Sarasin, Α., and A. Benoit. 1980. Induction of an error-prone mode of DNA repair in UV-irradiated monkey kidney cells. Mutat. Res. 70:71-81.
  • Schild, D., J. Johnston, C. Chang, and R. K. Mortimer. 1984. Cloning and mapping of the yeast photoreactivation gene PHRl. Mol. Cell. Biol. 4:1864-1870.
  • Shapira, S. K., J. Chou, F. V. Richaud, and M. J. Casadaban. 1983. New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused to lacZ sequences encoding an enzymatically active carboxy-terminal portion of β-galactosidase. Gene 25:71-82.
  • Sherman, F., G. L. Fink, and C. W. Lawrence. 1978. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Siede, W., G. W. Robinson, D. Kalainov, T. Malley, and E. C. Friedberg. 1989. Regulation of the RAD2 gene of Saccharomyces cerevisiae. Mol. Microbiol. 3:1697-1707.
  • Teo, I., B. Sedgwick, B. Demple, B. Li, and T. Lindahl. 1984. Induction of resistance to alkylating agents in E. coli: the ada gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage. EMBO J. 3:2151-57.
  • Tobey, R. A. 1975. Different drugs arrest cells at a number of distinct stages in G2. Nature (London) 254:245-247.
  • Torczynski, R., A. P. Bollon, and M. Fuke. 1983. The complete nucleotide sequence of the rat 18S ribosomal RNA gene and comparison with the respective yeast and frog genes. Nucleic Acids Res. 11:4879-4890.
  • Traeger, J. Μ., Κ. A. Heichman, and K. McEntee. 1988. Expression of the yeast UBI4 gene increases in response to DNA-damaging agents and in meiosis. Mol. Cell. Biol. 8:1132-1136.
  • Walker, G. 1985. Inducible DNA repair systems. Annu. Rev. Biochem. 54:425-457.
  • White, J. H. M., D. G. Barker, P. Nurse, and L. H. Johnston. 1986. Periodic transcription as a means of regulating gene expression during the cell cycle; contrasting modes of expression of DNA ligase genes in budding and fission yeast. EMBO J. 5:1705-1709.
  • Yasui, Α., and W. Laskowski. 1975. Determination of the number of photoreactivating enzyme molecules per haploid Saccharomyces cerevisiae cell. Int. J. Radiat. Biol. 28:511-518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.