1
Views
19
CrossRef citations to date
0
Altmetric
Gene Expression

Brain and Muscle Creatine Kinase Genes Contain Common TA-Rich Recognition Protein-Binding Regulatory Elements

, , , &
Pages 4826-4836 | Received 22 Feb 1990, Accepted 07 Jun 1990, Published online: 31 Mar 2023

Literature Cited

  • Arnold, Η. Η., Ε. Tannich, and Β. Μ. Paterson. 1988. The promoter of the chicken cardiac myosin light chain 2 gene shows cell-specific expression in transfected primary cultures of chicken muscle. Nucleic Acids Res. 16:2411-2429.
  • Babiss, L. E., R. S. Herbst, A. L. Bennett, and J. E. Darnell, Jr. 1987. Factors that interact with the rat albumin promoter are present both in hepatocytes and other cell types. Genes Dev. 1:256-267.
  • Baldwin, T. J., and S. J. Burden. 1989. Muscle-specific gene expression controlled by a regulatory element lacking a myoD1 binding site. Nature (London) 341:716-720.
  • Benfield, P. Α., D. Graf, P. N. Korolkoff, G. Hobson, and M. L. Pearson. 1988. Isolation of four rat creatine kinase genes and identification of multiple promoter sequences within the rat brain creatine kinase promoter. Gene 63:227-243.
  • Bond-Matthews, B., and N. Davidson. 1988. Transcription from each of the Drosophila act 5c leader exons is driven by a separate functional promoter. Gene 62:289-300.
  • Boxer, L. M., R. Prywes, R. G. Roeder, and L. Kedes. 1989. The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor. Mol. Cell. Biol. 9:515-522.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and Η. Η. Arnold. 1989. A novel muscle factor related to but distinct from MyoDl induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701-709.
  • Braun, T., E. Tannich, G. Buschhausen-Denker, and H.-H. Arnold. 1989. Promoter upstream elements of the chicken cardiac myosin light-chain 2-A gene interact with trans-acting regulatory factors for muscle-specific transcription. Mol. Cell. Biol. 9:2513-2525.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627-2640.
  • Chamberlain, J. S., J. B. Jaynes, and S. D. Hauschka. 1985. Regulation of creatine kinase induction in differentiating mouse myoblasts. Mol. Cell. Biol. 5:484-492.
  • Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294-5299.
  • Chuvpilo, S. Α., and V. V. Kravchenko. 1984. A simple and rapid method for sequencing DNA. FEBS Lett. 179:34-36.
  • Daouk, G. H., R. Kaddurah-Daouk, S. Putney, R. Kingston, and P. Schimmel. 1988. Isolation of a functional human gene for grain creatine kinase. J. Biol. Chem. 263:2442-2446.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987-1000.
  • Dignam, J. D., R. M. Lebowitz, and R. G. Roeder. 1983. Accurate transcription initiation by polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475-1489.
  • Donoghue, M., H. Ernst, B. Wentworth, B. Nadal-Ginard, and N. Rosenthal. 1988. A muscle-specific enhancer is located at the 3′ end of the myosin 1/3 gene locus. Genes Dev. 2:1779-1790.
  • Edmondson, D. G., and Ε. Ν. Olson. 1989. A gene with homology to the myc similarity region of myoDl is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3:628-640.
  • Gorman, C. M., L. F. Moffat, and Β. Η. Howard. 1982. Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Mol. Cell. Biol. 2:1044-1051.
  • Gossett, L. Α., D. J. Kelvin, E. A. Sternberg, and Ε. Ν. Olson. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022-5033.
  • Graham, F. L., and A. J. van der Eb. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:539-549.
  • Hamburg, R. J., D. L. Friedman, E. N. Olson, T. S. Ma, M. D. Cortez, C. Goodman, P. R. Puleo, and Μ. Β. Perryman. 1990. Muscle creatine kinase isoenzyme expression in adult human brain. J. Biol. Chem. 265:6403-6409.
  • Henninghausen, L., P. A. Furth, and C. W. Pittius. 1989. κΒ elements strongly activate gene expression in non-lymphoid cells and function synergistically with NF1 elements. Nucleic Acids Res. 17:8197-8206.
  • Hobson, G. M., M. T. Mitchell, G. R. Molloy, M. L. Pearson, and P. A. Benfield. 1988. Identification of a novel TA-rich DNA binding protein that recognizes a TATA sequence within the brain creatine kinase promoter. Nucleic Acids Res. 16:8925-8945.
  • Horlick, R. Α., and P. A. Benfield. 1989. The upstream muscle-specific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol. Cell. Biol. 9:2396-2413.
  • Jaynes, J. B., J. S. Chamberlain, J. N. Buskin, J. E. Johnson, and S. D. Hauschka. 1986. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblast. Mol. Cell. Biol. 6:2855-2864.
  • Jaynes, J. B., J. E. Johnson, J. N. Buskin, C. L. Gartside, and S. D. Hauschka. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements including a musclespecific enhancer. Mol. Cell. Biol. 8:62-70.
  • Johnson, J. E., B. J. Wold, and S. D. Hauschka. 1989. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol. Cell. Biol. 9:3393-3399.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823-831.
  • LeBowitz, J. Η., Τ. Kobayashi, L. Staudt, D. Baltimore, and P. A. Sharp. 1988. Octamer-binding proteins from Β or HeLa cells stimulate transcription of the immunoglobulin heavy-chain promoter in vitro. Genes Dev. 2:1227-1237.
  • Lin, Z., C. A. Dechesne, J. Eldridge, and Β. Μ. Paterson. 1989. An avian muscle factor related to myoD1 activates muscle-specific promoters in non muscle cells of different germ-layer origin and in BrdU-treated myoblasts. Genes Dev. 3:986-996.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499-560.
  • Minty, Α., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeat motif. Mol. Cell. Biol. 6:2125-2136.
  • Mitchell, Μ. Τ., and P. A. Benfield. 1990. Two different RNA polymerase II initiation complexes can assemble on the rat brain creatine kinase promoter. J. Biol. Chem. 265:8259-8267.
  • Miwa, T., and L. Kedes. 1987. Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human cardiac α-actin gene. Mol. Cell. Biol. 7:2803-2813.
  • Mueller, P. R., and B. Wold. 1989. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780-785.
  • Murre, C. P., P. Schonleber McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD and myc proteins. Cell 56:777-783.
  • Murre, C. P., P. Schonleber McCaw, H. Vassein, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537-544.
  • Perriard, J.-C. 1979. Developmental regulation of creatine kinase isoenzymes in myogenic cell culture from chicken. J. Biol. Chem. 254:7036-7041.
  • Pinney, D. F., S. H. Pearson-White, S. F. Konieczny, Κ. Ε. Latham, and C. P. Emerson, Jr. 1988. Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell 53:781-793.
  • Reinberg, D., M. Horikoshi, and R. G. Roeder. 1987. Factors involved in specific transcription in mammalian RNA polymerase II. Functional analysis of initiation factors IIA and IID and identification of a new factor operating at sequences downstream of the initiation site. J. Biol. Chem. 262:3322-3330.
  • Rhodes, S. J., and S. F. Konieczny. 1989. Identification of MRF4: a new member of the muscle regulatory gene family. Genes Dev. 3:2050-2061.
  • Sawadogo, M., and R. G. Roeder. 1985. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc. Natl. Acad. Sci. USA 82:4394-4398.
  • Shapiro, D. J., P. A. Sharp, W. W. Wahl, and M. J. Keller. 1988. A high efficiency HeLa nuclear transcription extract. DNA 7:47-55.
  • Singh, H., R. Sen, D. Baltimore, and P. A. Sharp. 1986. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature (London) 319:154-158.
  • Solomon, M. J., F. Strauss, and A. Varshavsky. 1986. A mammalian high mobility group protein recognizes any stretch of six A-T base pairs in duplex DNA. Proc. Natl. Acad. Sci. USA 83:1276-1280.
  • Staudt, L. M., H. Singh, R. Sen, T. Wirth, P. A. Sharp, and D. Baltimore. 1986. A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature (London) 323:640-643.
  • Sternberg, Ε. Α., G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. A. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896-2909.
  • Urdal, P., K. Urdal, and J. H. Strømme. 1983. Cytoplasmic creatine kinase isoenzymes quantitated in tissue specimens obtained at surgery. Clin. Chem. 29:310-313.
  • Walsh, K., and P. Schimmel. 1987. Two nuclear factors compete for the skeletal muscle actin promoter. J. Biol. Chem. 262:9429-9432.
  • Walsh, K., and P. Schimmel. 1988. DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells. Mol. Cell. Biol. 8:1800-1802.
  • Watts, D. C. 1973. Creatine kinase (adenosine 5′-triphosphate-creatine phosphotransferase), p. 383-455. In P.O. Boyer (ed.), The enzymes, 3rd ed., vol. 8. Academic Press, Inc., New York.
  • Weintraub, H., S. J. Tapscott, R. L. Davis, M. J. Thayer, M. A. Adam, A. B. Lassar, and D. A. Miller. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86:5434-5438.
  • Wigler, Μ. Α., A. Pellicer, S. Silverstein, and R. Axel. 1978. Biochemical transfer of single copy eukaryotic genes using total cellular DNA as a donor. Cell 14:725-731.
  • Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis has a domain homologous to MyoD. Cell 56:607-617.
  • Yaffee, D., and O. Saxel. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature (London) 270:725-727.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.