45
Views
36
CrossRef citations to date
0
Altmetric
Gene Expression

Suppression of Ribosomal Reinitiation at Upstream Open Reading Frames in Amino Acid-Starved Cells Forms the Basis for GCN4 Translational Control

, , &
Pages 486-496 | Received 09 Aug 1990, Accepted 25 Sep 1990, Published online: 31 Mar 2023

References

  • Baim, S. B., D. F. Pietras, D. C. Eustice, and F. Sherman. 1985. A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisia. iso-l-cytochrome c. Mol. Cell. Biol. 5:1839–1846.
  • Bahn, S. B., and F. Sherman. 1988. mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 8:1591–1601.
  • Bonner, W. M., and R. A. Laskey. 1974. A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46:83–88.
  • Cigan, A. M., and T. F. Donahue. 1987. Sequence and structural features associated with translational initiator regions in yeast—a review. Gene 59:1–13.
  • Cigan, A. M., L. Feng, and T. F. Donahue. 1988. tRNA functions in directing the scanning ribosome to the start site of translation. Science 242:93–97.
  • Cigan, A. M., E. K. Pabich, and T. F. Donahue. 1988. Mutational analysis of the HIS. translational initiator region in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2964–2975.
  • Donahue, T. F., and A. M. Cigan. 1988. Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS. translational initiator region. Mol. Cell. Biol. 8:2955–2963.
  • Groebe, D. R., and O. C. Uhlenbeck. 1988. Characterization of RNA hairpin loop stability. Nucleic Acids Res. 16:11725–11735.
  • Hinnebusch, A. G. 1984. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl. Acad. Sci. USA 81:6442–6446.
  • Hinnebusch, A. G. 1985. A hierarchy of trans-acting factors modulate translation of an activator of amino acid biosynthetic genes in yeast. Mol. Cell. Biol. 5:2349–2360.
  • Hinnebusch, A. G. 1988. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 52:248–273.
  • Hinnebusch, A. G., and G. R. Fink. 1983. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:5374–5378.
  • Hinnebusch, A. G., B. M. Jackson, and P. P. Mueller. 1988. Evidence for regulation of reinitiation in translational control of GCN. mRNA. Proc. Natl. Acad. Sci. USA 85:7279–7283.
  • Ito, H., Y. Fukada, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johansen, H., D. Schumperli, and M. Rosenberg. 1984. Affecting gene expression by altering the length and sequence of the 5′ leader. Proc. Natl. Acad. Sci. USA 81:7698–7702.
  • Klionsky, D. J., L. M. Banta, and S. D. Emr. 1988. Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol. Cell. Biol. 8:2105–2116.
  • Kozak, M. 1987. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell. Biol. 7:3438–3445.
  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229–241.
  • Kozak, M. 1989. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol. Cell. Biol. 9:5073–5080.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Lucchini, G., A. G. Hinnebusch, C. Chen, and G. R. Fink. 1984. Positive regulatory interactions of the HIS. gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1326–1333.
  • Miller, P. F., and A. G. Hinnebusch. 1989. Sequences that surround the stop codons of upstream open reading frames in GCN. mRNA determine their distinct functions in translational control. Genes Dev. 3:1217–1225.
  • Mueller, P. P., S. Harashima, and A. G. Hinnebusch. 1987. A segment of GCN. mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript. Proc. Natl. Acad. Sci. USA 84:2863–2867.
  • Mueller, P. P., and A. G. Hinnebusch. 1986. Multiple upstream AUG codons mediate translational control of GCN4. Cell 45: 201–207.
  • Mueller, P. P., B. M. Jackson, P. F. Miller, and A. G. Hinnebusch. 1988. The first and fourth upstream open reading frames in GCN. mRNA have similar initiation efficiencies but respond differently in translational control to changes in length and sequence. Mol. Cell. Biol. 8:5439–5447.
  • Peabody, D. S., and P. Berg. 1986. Termination-reinitiation occurs in the translation of mammalian cell mRNAs. Mol. Cell. Biol. 6:2695–2703.
  • Pelletier, J., and N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature (London) 334:320–325.
  • Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim. 1985. Enzymatic amplification of beta globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354.
  • Sedman, S. A., P. J. Good, and J. E. Mertz. 1989. Leader- encoded open reading frames modulate both the absolute and relative rates of synthesis of the virion proteins of simian virus 40. J. Virol. 63:3884–3893.
  • Sherman, F., and J. W. Stewart. 1982. Mutations altering initiation of translation of yeast iso-l-cytochrome c. contrasts between the eukaryotic and prokaryotic initiation process, p. 301–334. In J. N. Strathem, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces. metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sonenberg, N. 1988. Cap-binding proteins of eukaryotic messenger RNA: functions in initiation and control of translation. Prog. Nucleic Acid Res. Mol. Biol. 35:173–207.
  • Thireos, G., M. Driscoll-Penn, and H. Greer. 1984. 5′ untranslated sequences are required for the translational control of a yeast regulatory gene. Proc. Natl. Acad. Sci. USA 81:50965100.
  • Thomas, K. R., and M. R. Capecchi. 1986. Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature (London) 324:34–38.
  • Tzamarias, D., D. Alexandraki, and G. Thireos. 1986. Multiple cis-acting elements modulate the translational efficiency of GCN. mRNA in yeast. Proc. Natl. Acad. Sci. USA 83:4849–4853.
  • Tzamarias, D., I. Roussou, and G. Thireos. 1989. Coupling of GCN. mRNA translational activation with decreased rates of polypeptide chain initiation. Cell 57:947–954.
  • Tzamarias, D., and G. Thireos. 1988. Evidence that the GCN. protein kinase regulates reinitiation by yeast ribosomes. EMBO J. 7:3547–3551.
  • Williams, N. P., A. G. Hinnebusch, and T. F. Donahue. 1989. Mutations in the structural genes for eukaryotic initiation factors 2a and 20 of Saccharomyces cerevisia. disrupt translational control of GCN. mRNA. Proc. Natl. Acad. Sci. USA 86:7515–7519.
  • Williams, N. P., P. P. Mueller, and A. G. Hinnebusch. 1988. The positive regulatory function of the 5′-proximal open reading frames in GCN. mRNA can be mimicked by heterologous, short coding sequences. Mol. Cell. Biol. 8:3827–3836.
  • Wolfner, M., D. Yep, F. Messenguy, and G. R. Fink. 1975. Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J. Mol. Biol. 96:273–290.
  • Zoller, M. J., and M. Smith. 1982. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res. 10:6487–6500.
  • Zuker, M., and P. Stiegler. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9:133–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.