2
Views
4
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

In Vivo Analysis of the Saccharomyces cerevisiae Centromere CDEIII Sequence: Requirements for Mitotic Chromosome Segregation

, &
Pages 5212-5221 | Received 15 Apr 1991, Accepted 28 Jun 1991, Published online: 31 Mar 2023

References

  • Aggarwal, A. K., D. W. Rodgers, M. Drottar, M. Ptashne, and S. C. Harrison. 1988. Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242:899-907.
  • Baker, R. E., and D. C. Masison. 1990. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CPI. Mol. Cell. Biol. 10:2458-2467.
  • Barkley, M. D., and S. Bourgeois. 1978. Repressor recognition of operator and effectors, p. 177-220. In J. H. Miller and W. S. Reznikoff (ed.), The operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Bloom, K., and J. Carbon. 1982. Yeast centromere DNA is in a highly ordered structure in chromosomes and small circular minichromosomes. Cell 29:305-317.
  • Boeke, J., F. Lacroute, and G. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphatedecarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345-346.
  • Cai, M., and R. W. Davis. 1990. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437-446.
  • Carbon, J. 1984. Yeast centromeres: structure and function. Cell 37:351-353.
  • Carle, G. F., and M. V. Olson. 1984. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alteration gel electrophoresis. Nucleic Acids Res. 12:5647-5664.
  • Carle, G. F., and M. V. Olson. 1985. An electrophoretic karyotype for yeast. Proc. Natl. Acad. Sci. USA 82:3756-3760.
  • Clarke, L. 1990. Centromeres of budding and fission yeast. Trends Genet. 6:150-154.
  • Clarke, L., H. Amstutz, B. Fishel, and J. Carbon. 1986. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 83:8253-8257.
  • Clarke, L., and J. Carbon. 1980. Isolation of yeast centromere and construction of functional small circular chromosomes. Nature (London) 287:504-509.
  • Clarke, L., and J. Carbon. 1983. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature (London) 305:23-28.
  • Cottarel, G., J. H. Shero, P. Hieter, and J. H. Hegemann. 1989. A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:3342-3349.
  • Cumberledge, S., and J. Carbon. 1987. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203-212.
  • Densmore, L., W. E. Payne, and M. Fitzgerald-Hayes. 1991. In vivo genomic footprint of a yeast centromere. Mol. Cell. Biol. 11:154-165.
  • Dickerson, R. E., M. L. Kopka, and P. E. Pjura. 1987. DNA structure, p. 45-76. In W. Guschlbauer and W. Saenger (ed.), DNA-ligand interactions. Plenum Press, New York.
  • Drew, H. R., and A. A. Travers. 1985. DNA bending and its relation to nucleosome positioning. J. Mol. Biol. 186:773-790.
  • Funk, M., J. H. Hegemann, and P. Philippsen. 1989. Chromatin digestion with restriction endonucleases reveals 150-160 bp of protected DNA in the centromere of chromosome 14 in Saccharomyces cerevisiae. Mol. Gen. Genet. 219:153-160.
  • Gorbsky, G. J., P. J. Sammak, and G. G. Bortsy. 1987. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104:9-18.
  • Hegemann, J. H., R. D. Pridmore, R. Schneider, and P. Philippsen. 1986. Mutations in the right boundary of Saccharomyces cerevisiae centromere 6 lead to nonfunctional or partially functional centromeres. Mol. Gen. Genet. 205:305-311.
  • Hegemann, J. H., J. H. Shero, G. Cottarel, P. Philippsen, and P. Hieter. 1988. Mutational analysis of centromere DNA from chromosome 6 of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2523-2535.
  • Hieter, P., C. Mann, M. Snyder, and R. W. Davis. 1985. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40:381-392.
  • Hieter, P., D. Pridmore, J. H. Hegemann, M. Thomas, R. W. Davis, and P. Philippsen. 1985. Functional selection and analysis of yeast centromeric DNA. Cell 42:913-921.
  • Hill, A., and K. Bloom. 1987. Genetic manipulation of centromere function. Mol. Cell. Biol. 7:2397-2405.
  • Hill, D. E., I. A. Hope, J. P. Macke, and K. Struhl. 1986. Saturation mutagenesis of the yeast HIS3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. Science 234:451-457.
  • Hope, I. A., and K. Struhl. 1987. GCN4, a eucaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J. 6:2781-2784.
  • Huberman, J., D. R. Pridmore, D. Jäger, B. Zonnefeld, and P. Philippsen. 1986. Centromeric DNA from Saccharomyces uvarum is functional in Saccharomyces cerevisiae. Chromosoma 94:162-168.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact cells treated with alkali cations. J. Bacteriol. 153:163-168.
  • Jäger, D. Unpublished data.
  • Jordan, S. R., and C. O. Pabo. 1988. Structure of the lambda complex at 2.5 A resolution: details of the repressor-operator interactions. Science 242:893-899.
  • Kramer, W., V. Drutsa, H. W. Jansen, B. Kramer, M. Pflugfelder, and H.-J. Fritz. 1984. The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12:9441-9456.
  • Koudelka, G. B., P. Harbury, S. C. Harrison, and M. Ptashne. 1988. DNA twisting and the affinity of bacteriophage 434 operator for bacteriophage 434 repressor. Proc. Natl. Acad. Sci. USA 85:4633-4737.
  • Koudelka, G. B., S. C. Harrison, and M. Ptashne. 1987. Effect of non-contacted bases on the affinity of 434 operator for 434 repressor and Cro. Nature (London) 326:886-888.
  • Lea, D., and C. Coulson. 1949. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264-285.
  • Lechner, J., and J. Carbon. 1991. A 240 kD multisubunit protein complex (CBF3) is a major component of the budding yeast centromere. Cell 64:717-727.
  • Maicas, E., F. G. Pluthero, and J. D. Friesen. 1988. The accumulation of three yeast ribosomal proteins under conditions of excess mRNA is determined primarily by fast protein decay. Mol. Cell. Biol. 8:169-175.
  • Maniatis, T., J. Sambrook, and E. F. Fritsch. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • McGrew, J., B. Diehl, and M. Fitzgerald-Hayes. 1986. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:530-538.
  • Mellor, J., W. Jiang, M. Funk, J. Rathjen, C. A. Barnes, T. Hinz, J. H. Hegemann, and P. Philippsen. 1990. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 9:4017-4026.
  • Mitchison, T. J., and M. Kirchner. 1985. Properties of the kinetochore in vitro. II. Microtubule capture and ATP dependent translocation. J. Cell Biol. 101:766-777.
  • Murray, A. W., N. P. Schultes, and J. W. Szostak. 1986. Chromosome length controls mitotic chromosome segregation in yeast. Cell 45:529-536.
  • Nakaseko, Y., Y. Adachi, S. Funahashi, O. Niwa, and M. Yanagida. 1986. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 5:1011-1021.
  • Newlon, C. S. 1988. Yeast chromosome replication and segregation. Microbiol. Rev. 52:568-601.
  • Ng, R., and J. Carbon. 1987. Mutational and in vitro proteinbinding studies on centromere DNA from Saccharomyces cerevisiae. Mol. Cell. Biol. 7:4522-4534.
  • Ng, R., S. Cumberledge, and J. Carbon. 1986. Structure and function of centromeres, p. 225-239. In J. Hicks (ed.), Yeast cell biology. Alan R. Liss, Inc., New York.
  • Niedenthal, R., and J. Hegemann. Unpublished data.
  • Niedenthal, R., R. Stoll, and J. H. Hegemann. 1991. In vivo characterization of the Saccharomyces cerevisiae centromere DNA element I, a binding site for the helix-loop-helix protein CPF1. Mol. Cell. Biol. 11:3543-3553.
  • Pabo, C. O., and R. T. Sauer. 1984. Protein-DNA recognition. Annu. Rev. Biochem. 53:293-321.
  • Panzeri, L., I. Groth-Clausen, J. Sheperd, A. Stotz, and P. Philippsen. 1984. Centromeric DNA in yeast. Chromosomes Today 8:46-58.
  • Panzeri, L., L. Landonio, A. Stotz, and P. Philippsen. 1985. Role of conserved sequence elements in yeast centromere DNA. EMBO J. 4:1867-1874.
  • Pfarr, C. M., M. Coue, P. M. Grisson, T. S. Hays, M. E. Porter, and J. R. McIntosh. 1990. Cytoplasmic dynein is located to kinetochores during mitosis. Nature (London) 345:263-265.
  • Rieder, C. L., S. P. Alexander, and G. Rupp. 1990. Kineto- chores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110:81-95.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202-211.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
  • Sellers, J. W., A. C. Vincent, and K. Struhl. 1990. Mutations that define the optimal half-site for binding yeast GCN4 activator protein and identify an ATF/CREB-like repressor that recognizes similar DNA sites. Mol. Cell. Biol. 10:5077-5086.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shero, J., M. Koval, F. Spencer, R. Palmer, P. Hieter, and D. Koshland. 1991. Analysis of chromosome segregation in Saccharomyces cerevisiae. Methods Enzymol. 194:749-773.
  • Steuer, E. R., L. Wordeman, T. A. Schroer, and M. P. Sheetz. 1990. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature (London) 345:266-268.
  • Travers, A. A. 1989. DNA conformation and protein binding. Annu. Rev. Biochem. 58:427-452.
  • Wenink, P., and P. Philippsen. Personal communication.
  • Wilmen, A., and J. H. Hegemann. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.