2
Views
10
CrossRef citations to date
0
Altmetric
Gene Expression

An RNA-Binding Protein Specifically Interacts with a Functionally Important Domain of the Downstream Element of the Simian Virus 40 Late Polyadenylation Signal

&
Pages 5312-5320 | Received 19 Apr 1991, Accepted 23 Jul 1991, Published online: 31 Mar 2023

References

  • Bruce, A. G., and O. C. Uhlenbeck. 1976. Reactions at the termini of tRNA with T4 RNA ligase. Nucleic Acids Res. 5:3665-3677.
  • Carswell, S., and J. C. Alwine. 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol. Cell. Biol. 9:4248-4258.
  • Christofori, G., and W. Keller. 1988. 3′ cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell 54:875-889.
  • Cole, C. N., and T. P. Stacy. 1985. Identification of sequences in the herpes simplex virus thymidine kinase gene required for efficient processing and polyadenylation. Mol. Cell. Biol. 5:2104-2113.
  • Conway, L., and M. P. Wickens. 1985. A sequence downstream of AAUAAA is required for formation of simian virus 40 late mRNA 3′ termini in frog oocytes. Proc. Natl. Acad. Sci. USA 82:3949-3953.
  • DeZazzo, J. D., and M. J. Imperiale. 1989. Sequences upstream of AAUAAA influence poly (A) site selection in a complex transcription unit. Mol. Cell. Biol. 9:4951-4961.
  • DeZazzo, J. D., J. E. Kilpatrick, and M. J. Imperiale. 1991. Involvement of long terminal repeat U3 sequences overlapping the transcription control region in human immunodeficiency virus type 1 mRNA 3′ end formation. Mol. Cell. Biol. 11:1624-1630.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475-1489.
  • Dreyfuss, G. 1986. Structure and function of nuclear and cytoplasmic ribonucleoprotein particles. Annu. Rev. Cell Biol. 2:459-498.
  • Falck-Pedersen, E., and J. Logan. 1989. Regulation of poly(A) site selection in adenovirus. J. Virol. 63:531-541.
  • Galli, G., J. Guise, P. W. Tucker, and J. R. Nevins. 1988. Poly(A) site choice rather than splice site choice governs the regulated production of IgM heavy-chain RNAs. Proc. Natl. Acad. Sci. USA 85:2439-2443.
  • Gil, A., and N. J. Proudfoot. 1987. Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell 49:399-406.
  • Gilmartin, G. M., and J. R. Nevins. 1989. An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 3:2180-2189.
  • Gurgo, C., H.-G. Guo, G. Franchini, A. Aldovini, E. Collalti, K. Farrell, F. Wong-Staal, R. C. Gallo, and M. S. Reitz, Jr. 1988. Envelope sequences of two new united states HIV-1 isolates. Virology 164:531-536.
  • Hart, R. P., M. A. McDevitt, and J. R. Nevins. 1985. Poly(A) site cleavage in HeLa nuclear extract is dependent on downstream sequences. Cell 43:677-683.
  • Humphrey, T., G. Christofori, V. Lucijanic, and W. Keller. 1987. Cleavage and polyadenylation of messenger RNA precursors in vitro occurs within large and specific 3′ processing complexes. EMBO J. 6:4159-4168.
  • Leff, S. E., M. G. Rosenfeld, and R. M. Evans. 1986. Complex transcriptional units: diversity in gene expression by alternative mRNA processing. Annu. Rev. Biochem. 55:1091-1117.
  • Logan, J., E. Falck-Pedersen, J. E. Darnell, and T. Shenk. 1987. A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse beta-globin gene. Proc. Natl. Acad. Sci. USA 84:8306-8310.
  • Manley, J. L. 1988. Polyadenylation of mRNA precursors. Biochim. Biophys. Acta 950:1-12.
  • McDevitt, M. A., R. P. Hart, W. W. Wong, and J. R. Nevins. 1986. Sequences capable of restoring poly(A) site function define two distinct downstream elements. EMBO J. 5:2907-2913.
  • McDevitt, M. A., M. J. Imperiale, H. Ali, and J. R. Nevins. 1984. Requirement of a downstream sequence for generation of a poly(A) addition site. Cell 37:993-999.
  • McLauchlan, J., D. Gaffney, J. L. Whitton, and J. B. Clements. 1985. The consensus sequence YGTGTTYY located down-stream from the AAUAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Res. 13:1347-1367.
  • McLauchlan, J., S. Simpson, and J. B. Clements. 1989. Herpes simplex virus induces a processing factor that stimulates poly(A) site usage. Cell 59:1093-1105.
  • Mitchell, P. J., and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371-378.
  • Moore, C. L., and P. A. Sharp. 1985. Accurate cleavage and polyadenylation of exogenous RNA substrate. Cell 41:845-855.
  • Moore, C. L., H. Skolnick-David, and P. A. Sharp. 1988. Sedimentation analysis of polyadenylation-specific complexes. Mol. Cell. Biol. 8:226-233.
  • Niwa, M., S. D. Rose, and S. M. Berget. 1990. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4:1552-1559.
  • Pinol-Roma, S., Y. D. Choi, M. J. Matunis, and G. Dreyfuss. 1988. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev. 2:215-227.
  • Proudfoot, N. J. 1991. Poly(A) signals. Cell 64:671-674.
  • Russnak, R., and D. Ganem. 1990. Sequences 5′ to the polyadenylation signal mediate differential poly(A) site use in hepatitis B viruses. Genes Dev. 4:764-776.
  • Ryner, L. C., Y. Takagaki, and J. L. Manley. 1989. Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly. Mol. Cell. Biol. 9:1759-1771.
  • Sadofsky, M., and J. C. Alwine. 1984. Sequences on the 3′ side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site. Mol. Cell. Biol. 4:1460-1468.
  • Sadofsky, M., S. Connelly, J. L. Manley, and J. C. Alwine. 1985. Identification of a sequence element on the 3′ side of AAUAAA which is necessary for simian virus 40 late mRNA 3′-end processing. Mol. Cell. Biol. 5:2713-2719.
  • Sheets, M. D., S. C. Ogg, and M. P. Wickens. 1990. Point mutations in AAUAAA and the poly(A) addition site: effects of the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 18:5799-5805.
  • Smith, K. C. 1976. The radiation-induced addition of proteins and other molecules to nucleic acids, p. 187-218. In S. Y. Wang (ed.), Photochemistry and photobiology of nucleic acids, vol. 2. Academic Press, Inc., New York.
  • Stefano, J. E., and D. E. Adams. 1988. Assembly of a polyadenylation-specific 25S ribonucleoprotein complex in vitro. Mol. Cell. Biol. 8:2052-2062.
  • Takagaki, Y., J. L. Manley, C. C. MacDonald, J. Wilusz, and T. Shenk. 1990. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 4:2112-2120.
  • Takagaki, Y., L. C. Ryner, and J. L. Manley. 1989. Four factors are required for 3′ end cleavage of pre-mRNAs. Genes Dev. 3:1711-1724.
  • Valsamakis, A., S. Zeichner, S. Carswell, and J. C. Alwine. 1991. The human immunodeficiency virus type 1 polyadenylation signal: a 3′ long terminal repeat element upstream of the AAUAAA necessary for efficient polyadenylation. Proc. Natl. Acad. Sci. USA 88:2108-2112.
  • Weichs an der Glon, C., J. Monks, and N. J. Proudfoot. 1991. Occlusion of the HIV poly(A) site. Genes Dev. 5:244-253.
  • Whitelaw, E., and N. J. Proudfoot. 1986. Alpha-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3′ end processing in the human globin gene. EMBO J. 5:2915-2922.
  • Wickens, M. P. 1990. How the messenger got its tail: addition of poly(A) in the nucleus. Trends Biochem. Sci. 15:277-281.
  • Wigley, P. L., M. D. Sheets, D. A. Zarkower, M. E. Whitmer, and M. Wickens. 1990. Polyadenylation of mRNA: minimal substrates and a requirement for the 2′ hydroxyl of the U in AAUAAA. Mol. Cell. Biol. 10:1705-1713.
  • Wilk, H. E., H. Werr, D. Friedrich, H. H. Kiltz, and K. P. Schaefer. 1985. The core proteins of 35S hnRNP complexes: characterization of nine different species. Eur. J. Biochem. 146:71-81.
  • Wilusz, J., D. I. Feig, and T. Shenk. 1988. The C proteins of heterogeneous nuclear ribonucleoprotein complexes interact with RNA sequences downstream of the polyadenylation cleavage site. Mol. Cell. Biol. 8:4477-4483.
  • Wilusz, J., S. M. Pettine, and T. Shenk. 1989. Functional analysis of point mutations in the AAUAAA motif of the SV40 late polyadenylation signal. Nucleic Acids Res. 17:3899-3908.
  • Wilusz, J., and T. Shenk. 1988. A 64kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell 52:221-228.
  • Wilusz, J., and T. Shenk. 1990. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the down-stream element of the polyadenylation signal. Mol. Cell. Biol. 10:6397-6407.
  • Zarkower, D. A., and M. Wickens. 1987. Specific pre-cleavage and post-cleavage complexes involved in the formation of SV40 late mRNA 3′ termini in vitro. EMBO J. 6:4185-4192.
  • Zarkower, D. A., and M. Wickens. 1988. A functionally redundant downstream sequence in SV40 late pre-mRNA is required for mRNA 3′-end formation and for assembly of a precleavage complex in vitro. J. Biol. Chem. 263:5780-5788.
  • Zhang, F., and C. N. Cole. 1987. Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type I thymidine kinase precursor RNA. Mol. Cell. Biol. 7:3277-3286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.