1
Views
12
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Transactivation of the grp78 Promoter by Malfolded Proteins, Glycosylation Block, and Calcium Ionophore Is Mediated through a Proximal Region Containing a CCAAT Motif Which Interacts with CTF/NF-I

, , , , &
Pages 5612-5623 | Received 09 May 1991, Accepted 16 Aug 1991, Published online: 31 Mar 2023

References

  • Amin, J., J. Ananthan, and R. Voellmy. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761–3769.
  • Ananthan, J., A. L. Goldberg, and R. Voellmy. 1986. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524.
  • Chang, S. C., A. E. Erwin, and A. S. Lee. 1989. Glucose-regulated protein (GRP94 and GRP78) genes share common regulatory domains and are coordinately regulated by common trans-acting factors. Mol. Cell. Biol. 9:2153–2162.
  • Chang, S. C., S. K. Wooden, T. Nakaki, Y. K. Kim, A. Y. Lin, L. Kung, J. W. Attenello, and A. S. Lee. 1987. Rat gene encoding the 78-kDa glucose-regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proc. Natl. Acad. Sci. USA 84:680–684.
  • Chodosh, L. A., A. S. Baldwin, R. W. Carthew, and P. A. Sharp. 1988. Human CCAAT-binding proteins have heterologous sub-units. Cell 53:11–24.
  • Deshaies, R. J., B. D. Koch, M. Werner-Washbume, E. A. Craig, and R. Schekman. 1988. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature (London) 332:800–805.
  • Di Nocera, P. P., and I. B. David. 1983. Transient expression of genes introduced into cultured cells of Drosophila. Proc. Natl. Acad. Sci. USA 80:7095–7098.
  • Dorner, A. J., L. C. Wasley, and R. J. Kaufman. 1989. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 264:20602–20607.
  • Drummond, I. A. S., A. S. Lee, E. Resendez, Jr., and R. A. Steinhardt. 1987. Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts. J. Biol. Chem. 262:12801–12805.
  • Feige, J. J., G. A. Keller, and I. E. Scheffler. 1988. Temperature-sensitive Chinese hamster cell mutant with a defect in glycoprotein synthesis: accumulation of the EGF receptor in the endoplasmic reticulum and the role of the glucose-regulated protein GRP78. J. Cell. Physiol. 136:33–42.
  • Gething, M.-J., K. McCammon, and J. Sambrook. 1986. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46:939–950.
  • Gluzman, Y. 1981. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–182.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Greene, J. M., and R. E. Kingston. 1990. TATA-dependent and TATA-independent function of the basal and heat shock elements of a human hsp70 promoter. Mol. Cell. Biol. 10:1319–1328.
  • Haas, I. G., and M. Wabl. 1983. Immunoglobulin heavy chain binding protein. Nature (London) 306:387–389.
  • Hall, C. V., P. E. Jacob, G. M. Ringold, and F. Lee. 1983. Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Mol. Appl. Genet. 2:101–109.
  • Hendershot, L. M. 1990. Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition. J. Cell Biol. 111:829–837.
  • Hendershot, L. M., J. Ting, and A. S. Lee. 1988. Identity of the immunoglobulin heavy-chain-binding protein with the 78,000-dalton glucose-regulated protein and the role of posttranslational modifications in its binding function. Mol. Cell. Biol. 8:4250–4256.
  • Hightower, L. E. 1980. Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J. Cell. Physiol. 102:407–427.
  • Hurtley, S. M., D. G. Bole, H. Hoover-Litty, A. Helenius, and C. S. Copeland. 1989. Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP). J. Cell Biol. 108:2117–2126.
  • Jackson, S. P., and R. Tjian. 1989. Purification and analysis of RNA polymerase II transcription factors by using wheat germ agglutinin affinity chromatography. Proc. Natl. Acad. Sci. USA 86:1781–1785.
  • Jarvis, D. L., B. C. Oker, and M. D. Summers. 1990. Role of glycosylation in the transport of recombinant glycoproteins through the secretory pathway of lepidopteran insect cells. J. Cell. Biochem. 42:181–191.
  • Kim, Y. K., K. S. Kim, and A. S. Lee. 1987. Regulation of the glucose-regulated protein genes by β-mercaptoethanol requires de novo protein synthesis and correlates with inhibition of protein glycosylation. J. Cell. Physiol. 133:553–559.
  • Kim, Y. K., and A. S. Lee. 1991. Identification of a 70-base-pair cell cycle regulatory unit within the promoter of the human thymidine kinase gene and its interaction with cellular factors. Mol. Cell. Biol. 11:2296–2302.
  • Kozutsumi, Y., M. Segal, K. Normington, M. J. Gething, and J. Sambrook. 1988. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature (London) 332:462–464.
  • Landshulz, W. H., P. F. Johnson, E. Y. Adashi, B. J. Graves, and S. L. McKnight. 1988. Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev. 2:786–800.
  • Lee, A. S. 1987. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem. Sci. 12:20–23.
  • Lee, A. S. 1981. The accumulation of three specific proteins related to glucose-regulated proteins in a temperature-sensitive hamster mutant cell line K12. J. Cell. Physiol. 106:119–125.
  • Lee, A. S., S. Wells, K. S. Kim, and I. E. Scheffler. 1986. Enhanced synthesis of the glucose/calcium regulated proteins in a hamster cell mutant deficient in transfer of oligosaccharide core to polypeptides. J. Cell. Physiol. 129:277–282.
  • Li, L., and A. S. Lee. Unpublished results.
  • Li, X., and A. S. Lee. 1991. Competitive inhibition of a set of endoplasmic reticulum protein genes (GRP78, GRP94, and ERp72) retards cell growth and lowers viability after ionophore treatment. Mol. Cell. Biol. 11:3446–3453.
  • Lin, A. Y., S. C. Chang, and A. S. Lee. 1986. A calcium-ionophore inducible cellular promoter is highly active and has enhancerlike properties. Mol. Cell. Biol. 6:1235–1243.
  • Little, S. P., J. T. Jofre, R. J. Courtney, and P. A. Schaffer. 1981. A virion-associated glycoprotein essential for infectivity of herpes simplex virus type 1. Virology 115:149–160.
  • Liu, E. S., and A. S. Lee. Nucleic Acids Res., in press.
  • Lum, L. S. Y., L. A. Sultzman, R. J. Kaufman, D. I. H. Linzer, and B. J. Wu. 1990. A cloned human CCAAT-box-binding factor stimulates transcription from the human hsp70 promoter. Mol. Cell. Biol. 10:6709–6717.
  • McKnight, S. L., M. D. Lane, and S. Gluecksohn-Waelsch. 1989. Is CCAAT/enhancer-binding protein a central regulator of energy metabolism? Genes Dev. 3:2021–2024.
  • Mermod, N., E. A. O'Neill, T. J. Kelly, and R. Tjian. 1989. The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58:741–753.
  • Mizzen, L. A., A. N. Kabiling, and W. J. Welch. 1991. The two mammalian mitchondrial stress proteins, grp75 and hsp58, transiently interact with newly synthesized mitochondrial proteins. Cell Regul. 2:165–179.
  • Munro, S., and H. R. B. Pelham. 1986. An hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300.
  • Nakaki, T., S. Alexandre, and A. S. Lee. Unpublished data.
  • Nakaki, T., R. J. Deans, and A. S. Lee. 1989. Enhanced transcription of the 78,000-dalton glucose-regulated protein (GRP78) gene and association of GRP78 with immunoglobulin light chains in a nonsecreting B-cell myeloma line (NS-1). Mol. Cell. Biol. 9:2233–2238.
  • Navarro, D., I. Qadri, and L. Pereira. 1991. A mutation in the ectodomain of herpes simplex virus 1 glycoprotein B causes defective processing and retention in the endoplasmic reticulum. Virology 184:253–264.
  • Navarro, D., I. Qadri, and L. Pereira. Unpublished data.
  • Ng, D. T. W., S. W. Hiebert, and R. A. Lamb. 1990. Different roles of individual N-linked oligosaccharide chains in folding, assembly, and transport of the simian virus 5 hemagglutinin-neuraminidase. Mol. Cell. Biol. 10:1989–2001.
  • Ng, D. T. W., R. E. Randall, and R. A. Lamb. 1989. Intracellular maturation and transport of the SV5 type II glycoprotein hemagglutinin-neuraminidase: specific and transient association with GRP78-BiP in the endoplasmic reticulum and extensive internalization from the cell surface. J. Cell Biol. 109:3273–3289.
  • Normington, K., K. Kohno, Y. Kozutsumi, M. J. Gething, and J. Sambrook. 1989. S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57:1223–1236.
  • Norrild, B. 1980. Immunochemistry of herpes simplex virus glycoproteins. Curr. Top. Microbiol. Immunol. 90:67–106.
  • Park, E. A., W. J. Roesler, J. Liu, D. J. Klemm, A. L. Gurney, J. D. Thatcher, J. Shuman, A. Friedman, and R. W. Hanson. 1990. The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol. Cell. Biol. 10:6264–6272.
  • Pellett, P. E., K. G. Kousoulas, L. Pereira, and B. Roizman. 1985. Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants. J. Virol. 53:243–253.
  • Pereira, L., M. Ali, K. Kousoulas, H. Bin, and T. Banks. 1989. Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172:11–24.
  • Pereira, L., I. Qadri, D. Navarro, and C. Gimeno. 1990. Antigenic and structural properties of mutants in herpes simplex virus 1 glycoprotein B, p. 165-182. In C. Lopez, R. Mori, B. Roizman and R. Whitley (ed.), Immunobiology and prophylaxis of human herpes virus infections. Plenum Press, New York.
  • Pugh, B. F., and R. Tjian. 1990. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61:1187–1197.
  • Qadri, I., C. Gimeno, D. Navarro, and L. Pereira. 1991. Mutations in conformation-dependent domains of herpes simplex virus 1 glycoprotein B affect the antigenic properties, dimerization, and cell-surface transport of the molecule. Virology 180:135–152.
  • Resendez, E., Jr., J. W. Attenello, A. Grafsky, C. S. Chang, and A. S. Lee. 1985. Calcium ionophore A23187 induces expression of glucose-regulated genes and their heterologous fusion genes. Mol. Cell. Biol. 5:1212–1219.
  • Resendez, E., Jr., S. K. Wooden, and A. S. Lee. 1988. Identification of highly conserved regulatory domains and proteinbinding sites in the promoters of the rat and human genes encoding the stress-inducible 78-kilodalton glucose-regulated protein. Mol. Cell. Biol. 8:4579–4584.
  • Rose, M. D., L. M. Misra, and J. P. Vogel. 1989. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57:1211–1221.
  • Rothman, J. E. 1989. Peptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59:591–601.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Santoro, C., N. Mermod, P. C. Andrews, and R. Tjian. 1988. A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature (London) 334:218–224.
  • Sarmiento, M., M. Haffey, and P. G. Spear. 1979. Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7 (B2) in virion infectivity. J. Virol. 29:1149–1158.
  • Schneider, I. 1972. Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27:353–365.
  • Sciandra, J. J., J. R. Subjeck, and C. S. Hughes. 1984. Induction of glucose-regulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation. Proc. Natl. Acad. Sci. USA 81:4843–4847.
  • Ting, J., and A. S. Lee. 1988. The human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene: structure, conservation and regulation. DNA 7:275–286.
  • Watowich, S. S., and R. I. Morimoto. 1988. Complex regulation of heat shock- and glucose-responsive genes in human cells. Mol. Cell. Biol. 8:393–403.
  • Whelan, S. A., and L. F. Hightower. 1985. Differential induction of glucose-regulated and heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells. J. Cell. Physiol. 125:251–258.
  • Williams, G. T., and R. I. Morimoto. 1990. Maximal stress-induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol. Cell. Biol. 10:3125–3136.
  • Wong, G. G., J. S. Witek, P. A. Temple, K. M. Wilkens, A. C. Leary, D. P. Luxemberg, S. S. Jones, E. L. Brown, R. M. Kay, E. C. Orr, C. Shoemaker, D. W. Golde, R. J. Kaufman, R. M. Hewick, E. A. Wang, and S. C. Clark. 1985. Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 228:810–815.
  • Wooden, S. K., R. P. Kapur, and A. S. Lee. 1988. The organization of the rat GRP78 gene and A23187-induced expression of fusion gene products targeted intracellularly. Exp. Cell Res. 178:84–92.
  • Wooden, S. K., and A. S. Lee. Unpublished data.
  • Xiao, H., and J. T. Lis. 1988. Germline transformation used to define key features of heat-shock response elements. Science 239:1139–1142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.