9
Views
32
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Mutations in SPT16/CDC68 Suppress cis- and trans-Acting Mutations That Affect Promoter Function in Saccharomyces cerevisiae

, , &
Pages 5710-5717 | Received 03 Jul 1991, Accepted 26 Aug 1991, Published online: 31 Mar 2023

References

  • Abrams, E., L. Neigeborn, and M. Carlson. 1986. Molecular analysis of SNF2 and SNF5, genes required for expression of glucose repressible genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3643–3651.
  • Bender, A., and G. F. Sprague, Jr. 1987. MATα1 protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes. Cell 50:681–691.
  • Birnboim, H. C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1523.
  • Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast:5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. 5-Fluoro-orotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Botstein, D., S. C. Falco, S. E. Stewart, M. Brennan, S. Scherer, D. T. Stinchcomb, K. Struhl, and R. W. Davis. 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Buchman, A. R., W. J. Kimmerly, J. Rine, and R. D. Kornberg. 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously repli cating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:210–225.
  • Burk, A. J. 1986. Adenovirus promoters and E1A trans-activation. Annu. Rev. Gen. 20:45–79.
  • Carle, G. F., M. Frank, and M. V. Olson. 1986. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232:65–68.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Carlson, M., B. C. Osmond, and D. Botstein. 1981. Mutants of yeast defective for sucrose utilization. Genetics 98:25–40.
  • Celenza, J. L., and M. Carlson. 1989. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9:5034–5044.
  • Celenza, J. L., F. J. Eng, and M. Carlson. 1989. Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for a physical association of the SNF4 protein with the SNF1 protein kinase. Mol. Cell. Biol. 9:5045–5054.
  • Clark-Adams, C. D. 1988. Ph.D. thesis. Harvard University, Cambridge, Mass.
  • Clark-Adams, C. D., D. Norris, M. A. Osley, J. S. Fassler, and F. Winston. 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2:150–159.
  • Clark-Adams, C. D., and F. Winston. 1987. The SPT6 gene is essential for growth and is required for 5-mediated transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:679–686.
  • Earnshaw, W. C. 1987. Anionic regions in nuclear proteins. J. Cell Biol. 105:1479–1482.
  • Eisenmann, D. M., C. Dollard, and F. Winston. 1989. SPT15, the gene encoding the yeast TATA binding protein TFIID, is required for normal transcription initiation in vivo. Cell 58:1183–1191.
  • Estruch, F., and M. Carlson. 1990. SNF6 encodes a nuclear protein that is required for expression of many genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2544–2553.
  • Farabaugh, P. J., and G. R. Fink. 1980. Insertion of the eukaryotic transposable element Ty1 creates a 5-base pair duplication. Nature (London) 286:352–356.
  • Fassler, J. S., and F. Winston. 1988. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118:203–212.
  • Fassler, J. S., and F. Winston. 1989. The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription. Mol. Cell. Biol. 9:5602–5609.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Feinberg, A. P., and B. Vogelstein. 1984. A technique for radiolabeling restriction endonuclease fragments to high specific activity. Anal. Biochem. 137:266–267.
  • Gerring, S. L., C. Connelly, and P. Heiter. 1990. Positional mapping of genes by chromosome blotting and chromosome fragmentation. Methods Enzymol. 194:57–77.
  • Happel, A. M., M. S. Swanson, and F. Winston. 1991. The SNF2, SNF5, and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics 128:69–77.
  • Hartwell, L. H., J. Culotti, J. R. Pringle, and B. J. Reid. 1974. Genetic control of the cell division cycle in yeast. Science 183:46–51.
  • Hirschhorn, J. N., S. A. Brown, C. D. Clark, and F. Winston. Unpublished data.
  • Hirschhorn, J. N., and F. Winston. 1988. SPT3 is required for normal levels of a-factor and α-factor expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:822–827.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Huet, J., P. Cottrelle, M. Cool, M.-L. Vignais, D. Thiele, C. Merck, J.-M. Buhler, A. Sentenac, and P. Fromageot. 1985. A general upstream binding factor for genes of the yeast translation apparatus. EMBO J. 4:3539–3547.
  • Huisman, O., W. Raymond, K. Froelich, P. Errada, N. Kleckner, D. Botstein, and M. A. Hoyt. 1987. A Tn10-lacZ-kanR-URA3 gene fusion transposon for insertion mutagenesis and fusion analysis of yeast and bacterial genes. Genetics 116:191–199.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Keleher, C. A., C. Goutte, and A. D. Johnson. 1988. The yeast cell-type-specific repressor α2 acts cooperatively with a non-cell-type-specific protein. Cell 53:927–936.
  • Malone, E. A., and F. Winston. Unpublished data.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mortimer, R. K., and D. C. Hawthorne. 1969. Yeast genetics, p. 385-460. In A. H. Rose and J. S. Harrison (ed.), The yeasts, vol. 1. Academic Press, Inc., New York.
  • Mortimer, R. K., D. Schild, C. R. Contopoulou, and J. A. Kans. 1989. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast 5:321–403.
  • Neigeborn, L., and M. Carlson. 1984. Genes affecting the regulation of SUC2 gene expression in Saccharomyces cerevisiae. Genetics 108:845–858.
  • Neigeborn, L., J. L. Celenza, and M. Carlson. 1987. SSN20 is an essential gene with mutant alleles that suppress defects in SUC2 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:672–678.
  • Neigeborn, L., K. Rubin, and M. Carlson. 1986. Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast. Genetics 112:741–753.
  • Prelich, G., E. A. Malone, and F. Winston. Unpublished results.
  • Prendergast, J. A., L. E. Murray, A. Rowley, D. R. Carruthers, R. A. Singer, and G. C. Johnston. 1990. Size selection identifies new genes that regulate Saccharomyces cerevisiae cell proliferation. Genetics 124:81–90.
  • Rigby, P. W., M. Diekman, C. Rhodes, and P. Berg. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251.
  • Roeder, G. S., and G. R. Fink. 1980. DNA rearrangements associated with a transposable element in yeast. Cell 21:239–249.
  • Rose, M. D., F. Winston, and P. Heiter. 1990. Methods in yeast genetics, revised edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Rowley, A., R. A. Singer, and G. C. Johnston. 1991. CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol. Cell. Biol. 11:5718–5726.
  • Sarokin, L., and M. Carlson. 1984. Upstream region required for regulated expression of the glucose-repressible SUC2 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2750–2757.
  • Scherer, S., and R. W. Davis. 1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. USA 76:4951–4955.
  • Schwartz, D. C., and C. R. Cantor. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1978. Methods in yeast genetics, revised edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shore, D., and K. Nasmyth. 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732.
  • Shore, D., D. J. Stillman, A. H. Brand, and K. A. Nasmyth. 1987. Identification of silencer binding proteins from yeast: possible roles in SIR control of DNA replication. EMBO J. 6:461–467.
  • Sikorski, R. S., and P. Heiter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Som, T., K. A. Armstrong, F. C. Volkert, and J. R. Broach. 1988. Autoregulation of 2μm circle gene expression provides a model for maintenance of stable plasmid copy levels. Cell 52:27–37.
  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Struhl, K., D. T. Stinchcomb, S. Scherer, and R. W. Davis. 1979. High frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.
  • Suzuki, Y., Y. Nogi, A. Abe, and T. Fukasawa. 1988. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4991–4999.
  • Swanson, M. S. 1991. Ph.D. thesis. Harvard University, Cambridge, Mass.
  • Swanson, M. S., M. Carlson, and F. Winston. 1990. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol. Cell. Biol. 10:4935–4941.
  • Swanson, M. S., E. A. Malone, and F. Winston. 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11:3009–3019.
  • Winston, F. Unpublished data.
  • Winston, F., D. T. Chaleff, B. Valent, and G. R. Fink. 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107:179–197.
  • Winston, F., C. Dollard, E. A. Malone, J. Clare, J. G. Kapakos, P. Farabaugh, and P. L. Minehart. 1987. Three genes are required for trans-activation of Ty transcription in yeast. Genetics 115:649–656.
  • Winston, F., K. J. Durbin, and G. R. Fink. 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39:675–682.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.