1
Views
12
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Mutations in a Conserved Region of RNA Polymerase II Influence the Accuracy of mRNA Start Site Selection

&
Pages 5781-5791 | Received 11 Jun 1991, Accepted 29 Aug 1991, Published online: 31 Mar 2023

References

  • Allison, L. A., and C. J. Ingles. 1989. Mutations in RNA polymerase II enhance or suppress mutations in GALA. Proc. Natl. Acad. Sci. USA 86:2794–2798.
  • Allison, L. A., M. Moyle, M. Shales, and C. J. Ingles. 1985. Extensive homology among the largest subunits of eucaryotic and procaryotic RNA polymerases. Cell 42:599–610.
  • Arndt, K. T., C. Styles, and G. R. Fink. 1987. Multiple global regulators control HIS4 transcription in yeast. Science 237:874–880.
  • Arndt, K. T., C. A. Styles, and G. R. Fink. 1989. A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell 56:527–537.
  • Baker, C. C., and E. B. Ziff. 1981. Promoters and heterogeneous 5′ termini of the messenger RNAs of adenovirus serotype 2. J. Mol. Biol. 149:189–221.
  • Biggin, M. D., T. J. Gibson, and G. F. Hong. 1983. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80:3963–3965.
  • Boeke, J. D. 1989. Transposable elements in Saccharomyces cerevisiae, p. 335-374. In D. E. Berg and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Boeke, J. D., D. J. Garfinkel, C. A. Styles, and G. R. Fink. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. 5-Fluoro-orotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Borukhov, S., J. Lee, and A. Goldfarb. Mapping of a contact for RNA 3′-terminus in the largest subunit of RNA polymerase. J. Biol. Chem., in press.
  • Breathnach, R., and P. Chambon. 1981. Organization and expression of eucaryotic split genes coding for proteins. Annu. Rev. Biochem. 50:349–383.
  • Buratowski, S., S. Hahn, L. Guarente, and P. A. Sharp. 1989. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549–561.
  • Buratowski, S., S. Hahn, P. A. Sharp, and L. Guarente. 1988. Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature (London) 334:37–42.
  • Cavallini, B., J. Huet, J. Plassat, A. Sentenac, J. Egly, and P. Chambon. 1988. A yeast activity can substitute for the HeLa cell TATA box factor. Nature (London) 334:77–80.
  • Chen, E. Y., and P. H. Seeburg. 1985. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170.
  • Chen, W., and K. Struhl. 1985. Yeast mRNA initiation sites are determined primarily by specific sequences, not by the distance from the TATA element. EMBO J. 4:3273–3280.
  • Clark-Adams, C. D., D. Norris, M. Osley, J. S. Fassler, and F. Winston. 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2:150–159.
  • Clark-Adams, C. D., and F. Winston. 1987. The SPT6 gene is essential for growth and is required for δ-mediated transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:679–686.
  • Concino, M. F., R. F. Lee, J. P. Merryweather, and R. Weinmann. 1984. The adenovirus major late promoter TATA box and initiation site are both necessary for transcription in vitro. Nucleic Acids Res. 12:7423–7433.
  • Comelissen, A. W. C. A., R. Evers, and J. Kock. 1988. Structure and sequence of genes encoding subunits of eukaryotic RNA polymerases. Oxf. Surv. Eukaryotic Genes 5:91–131.
  • Donahue, T. F., P. J. Farabaugh, and G. R. Fink. 1982. The nucleotide sequence of the HIS4 region of yeast. Gene 18:47–59.
  • Dreyfuss, G., S. Adam, and Y. Choi. 1984. Physical changes in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Mol. Cell. Biol. 4:415–423.
  • Eisenmann, D. M., C. Dollard, and F. Winston. 1989. SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58:1183–1191.
  • Elder, R. T., T. P. St. John, D. T. Stinchcomb, and R. W. Davis. 1980. Studies on the transposable element Ty1 of yeast. I. RNA homologous to Tyl. Cold Spring Harbor Symp. Quant. Biol. 45:581–584.
  • Falkenburg, D., B. Dworniczak, D. M. Faust, and E. K. F. Bautz. 1987. RNA polymerase II of Drosophila: relation of its 140,000 Mr subunit to the beta subunit of Escherichia coli RNA polymerase. J. Mol. Biol. 195:929–937.
  • Fassler, J. S., and F. Winston. 1988. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118:203–212.
  • Favalaro, J., R. Treisman, and R. Kamen. 1980. Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. Methods Enzymol. 65:718–749.
  • Gardella, T., H. Moyle, and M. M. Susskind. 1989. A mutant Escherichia coli σ70 subunit of RNA polymerase with altered promoter specificity. J. Mol. Biol. 206:579–590.
  • Gralla, J. D. 1990. Promoter recognition and mRNA initiation by Escherichia coli Eσ70. Methods Enzymol. 185:37–53.
  • Grosschedl, R., and M. L. Birnsteil. 1980. Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutations in vitro. Proc. Natl. Acad. Sci. USA 77:1432–1436.
  • Grosveld, G. C., C. K. Shewmaker, P. Jat, and R. A. Flavell. 1981. Localization of DNA sequences necessary for transcription of the rabbit β-globin gene in vitro. Cell 25:215–226.
  • Guarente, L. 1987. Regulatory proteins in yeast. Annu. Rev. Genet. 21:425–452.
  • Hahn, S., S. Buratowski, P. A. Sharp, and L. Guarente. 1989. Identification of a yeast protein homologous in function to the mammalian general transcription factor, TFIIA. EMBO J. 8:3379–3382.
  • Hahn, S., E. T. Hoar, and L. Guarente. 1985. Each of three "TATA elements" specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82:8562–8566.
  • Hirschman, J. E., K. J. Durbin, and F. Winston. 1988. Genetic evidence for promoter competition in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4608–4615.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Ingles, C. J., H. J. Himmelfarb, M. Shales, A. L. Greenleaf, and J. D. Friesen. 1984. Identification, molecular cloning, and mutagenesis of Saccharomyces cerevisiae RNA polymerase genes. Proc. Natl. Acad. Sci. USA 81:2157–2161.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kakidani, H., and M. Ptashne. 1988. GAL4 activates gene expression in mammalian cells. Cell 52:161–167.
  • Kolodziej, P., and R. A. Young. 1989. RNA polymerase II subunit RPB3 is an essential component of the mRNA transcription apparatus. Mol. Cell. Biol. 9:5387–5394.
  • Lillie, J. W., M. Green, and M. R. Green. 1986. An adenovirus E1a protein region required for transformation and transcriptional repression. Cell 46:1043–1051.
  • Lin, Y.-S., M. F. Carey, M. Ptashne, and M. R. Green. 1988. GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Cell 54:659–664.
  • Maicas, E., and J. D. Friesen. 1990. A sequence pattern that occurs at the transcription initiation region of yeast RNA polymerase II promoters. Nucleic Acids Res. 18:3387–3393.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mann, C., and R. W. Davis. 1986. Structure and sequence of the centromeric DNA of chromosome 4 in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:241–245.
  • Meinkoth, J., and G. Wahl. 1984. Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 138:267–284.
  • Nagawa, F., and G. R. Fink. 1985. The relationship between the "TATA" sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82:8557–8561.
  • Nonet, M. Personal communication.
  • Nonet, M., C. Scafe, J. Sexton, and R. Young. 1987. Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol. Cell. Biol. 7:1602–1611.
  • Nonet, M., D. Sweetser, and R. A. Young. 1987. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50:909–915.
  • Pellman, D., M. E. McLaughlin, and G. R. Fink. 1990. Function of the TATA element at HIS4. Nature (London) 348:82–86.
  • Reinberg, D., M. Horikoshi, and R. Roeder. 1987. Factors involved in specific transcription by mammalian RNA polymerase II: functional analysis of initiation factors IIA and IID and identification of a new factor operating at sequences downstream of the initiation site. J. Biol. Chem. 262:3322–3330.
  • Rosenberg, M., and D. Court. 1979. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu. Rev. Genet. 13:319–353.
  • Rudolph, H., and A. Hinnen. 1987. The yeast PH05 promoter: phosphate-control elements and sequences mediating mRNA start-site selection. Proc. Natl. Acad. Sci. USA 84:1340–1344.
  • Sawadogo, M., and A. Sentenac. 1990. RNA polymerase B (II) and general transcription factors. Annu. Rev. Biochem. 59:711–754.
  • Scafe, C., D. Chao, J. Lopes, J. P. Hirsch, S. Henry, and R. A. Young. 1990. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature (London) 347:491–494.
  • Scafe, C., C. Martin, M. Nonet, S. Podos, S. Okamura, and R. A. Young. 1990. Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits. Mol. Cell. Biol. 10:1270–1275.
  • Scafe, C., M. Nonet, and R. A. Young. 1990. RNA polymerase II mutants defective in transcription of a subset of genes. Mol. Cell. Biol. 10:1010–1016.
  • Sentenac, A. 1985. Eucaryotic RNA polymerases. Crit. Rev. Biochem. 18:31–90.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Siegele, D. A., J. C. Hu, W. A. Walter, and C. A. Gross. 1989. Altered promoter recognition by mutant forms of the σ70 subunit of Escherichia coli RNA polymerase. J. Mol. Biol. 206:591–603.
  • Silverman, S. J., and G. R. Fink. 1984. Effects of Ty insertions on HIS4 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1246–1251.
  • Simchen, G., F. Winston, C. A. Styles, and G. R. Fink. 1984. Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc. Natl. Acad. Sci. USA 81:2431–2434.
  • Smale, S. T., and D. Baltimore. 1989. The "initiator" as a transcription control element. Cell 57:103–113.
  • Smale, S. T., M. C. Schmidt, A. J. Berk, and D. Baltimore. 1990. Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc. Natl. Acad. Sci. USA 87:4509–4513.
  • Swanson, M. S., E. A. Malone, and F. Winston. 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11:3009–3019.
  • Sweetser, D., M. Nonet, and R. A. Young. 1987. Prokaryotic and eucaryotic RNA polymerases have homologous core subunits. Proc. Natl. Acad. Sci. USA 84:1192–1196.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Valenzuela, P., G. I. Bell, F. Weinburg, and W. J. Rutter. 1978. Isolation and assay of eucaryotic DNA dependent RNA polymerases. Methods Cell Biol. 19:1–26.
  • Wasylyk, B. 1988. Transcription elements and factors of RNA polymerase B promoters of higher eucaryotes. Crit. Rev. Biochem. 23:77–120.
  • Webster, N., J. R. Jin, S. Green, M. Hollis, and P. Chambon. 1988. The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Cell 52:169–178.
  • Weil, P. A., D. S. Luse, J. Segall, and R. G. Roeder. 1979. Selective and accurate initiation of transcription at the Ad2 major late promoter in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18:469–484.
  • Winston, F. Personal communication.
  • Winston, F., D. T. Chaleff, B. Valent, and G. R. Fink. 1984. Mutations affecting Ty-mediated expression of Saccharomyces cerevisiae. Genetics 107:179–197.
  • Winston, F., C. Dollard, E. A. Malone, J. Clare, J. G. Kapakos, P. Farabaugh, and P. L. Minehart. 1987. Three genes are required for trans-activation of Ty transcription in yeast. Genetics 115:649–656.
  • Winston, F., K. J. Durbin, and G. R. Fink. 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39:675–682.
  • Woychik, N. A., W. S. Lane, and R. A. Young. Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes. J. Biol. Chem., in press.
  • Woychik, N. A., S.-M. Liao, P. A. Kolodziej, and R. A. Young. 1990. Subunits shared by eucaryotic nuclear RNA polymerases. Genes Dev. 4:313–323.
  • Woychik, N. A., and R. A. Young. 1989. RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth. Mol. Cell. Biol. 9:2854–2859.
  • Woychik, N. A., and R. A. Young. 1990. RNA polymerase II: subunit structure and function. Trends Biochem. Sci. 15:347–351.
  • Woychik, N. A., and R. A. Young. 1991. RNA polymerase II subunit RPB10 is essential for yeast cell viability. J. Biol. Chem. 265:17816–17819.
  • Young, R. A. 1991. RNA polymerase II. Annu. Rev. Biochem. 60:689–715.
  • Young, R. A., and R. W. Davis. 1983. Yeast RNA polymerase II genes: isolation with antibody probes. Science 222:778–782.
  • Zuber, P., J. Healy, H. L. Carter, S. Cutting, C. P. Morgan, and R. Losik. 1989. Mutations changing the specificity of an RNA polymerase sigma factor. J. Mol. Biol. 206:605–614.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.