10
Views
40
CrossRef citations to date
0
Altmetric
Gene Expression

Selection of Splice Sites in Pre-mRNAs with Short Internal Exons

&
Pages 6075-6083 | Received 30 May 1991, Accepted 04 Sep 1991, Published online: 31 Mar 2023

REFERENCES

  • Aebi, Μ., Η. Horning, R. A. Padgett, J. Reiser, and C. Weissmann. 1986. Sequence requirement for splicing of higher eucaryotic nuclear pre-mRNA. Cell 47:555-565.
  • Aho, S., V. Tate, and H. Boedtker. 1984. Location of the 11 bp exon in the chicken pro-alpha2(I) collagen gene. Nucleic Acids Res. 15:6117-6125.
  • Andreadis, Α., Μ. Ε. Gallego, and Β. Nadal-Ginard. 1987. Generation of protein isoform diversity by alternative splicing. Annu. Rev. Cell Biol. 3:207-242.
  • Baldwin, Α., Ε. L. W. Kittler, and C. P. Emerson. 1985. Structure, evolution and regulation of a fast skeletal muscle troponin I gene. Proc. Natl. Acad. Sci. USA 82:8080-8084.
  • Black, D. L. 1991. Does steric interference between splice sites block the splicing of a short c-src neuron specific exon in non-neuronal cells? Genes Dev. 5:389-402.
  • Breitbart, R. E., and B. Nadal-Ginard. 1986. Complete nucleotide sequence of the fast skeletal troponin Τ gene. J. Mol. Biol. 188:313-324.
  • Christofori, G., D. Frendewey, and W. Keller. 1987. Two spliceosomes can form simultaneously and independently on synthetic double-intron messenger RNA precursors? EMBO J. 6:1747-1755.
  • Davis, M. G., and E.-S. Huang. 1988. Transfer and expression of plasmids containing human cytomegalovirus immediate-early promoter-enhancer sequences in eukaryotic and prokaryotic cells. Biotechnol. Appl. Biochem. 10:6-12.
  • Dignam, J. D., P. L. Martin, B. S. Shastry, and R. G. Roeder. 1983. Eukaryotic gene transcription with purified components. Methods Enzymol. 101:582-599.
  • Eperon, L. P., I. R. Graham, A. D. Griffiths, and I. C. Eperon. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase. Cell 54:393-401.
  • Freyer, G. Α., J. P. O’Brien, and J. Hurwitz. 1989. Alterations in the polyY sequence affect the in vitro splicing reactions catalyzed by HeLa cell-free preparations. J. Biol. Chem. 264:14631-14637.
  • Fu, X.-D., R. A. Katz, A. M. Skalka, and T. Maniatis. 1991. The role of branchpoint and 3′-exon sequences in the control of balanced splicing of avian retrovirus RNA. Genes Dev. 5:211-220.
  • Fu, X.-Y., H. Ge, and J. Manley. 1988. The role of polypyrimidine stretch at the SV40 early pre-mRNA 3′ splice site in alternative splicing? EMBO J. 7:809-817.
  • Furdon, P. J., and R. Kole. 1986. Inhibition of splicing but not cleavage at the 5′ splice site by truncating the human β-globin pre-mRNA. Proc. Natl. Acad. Sci. USA 83:27-931.
  • Furdon, P. J., and R. Kole. 1988. The length of the downstream exon and the substitution of specific sequences affect pre-mRNA splicing in vitro. Mol. Cell. Biol. 8:860-866.
  • Ge, H., and J. L. Manley. 1990. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62:25-34.
  • Hawkins, J. D. 1988. A survey of intron and exon lengths. Nucleic Acids Res. 16:9893-9908.
  • Konarska, Μ. Μ., R. A. Padgett, and P. A. Sharp. 1984. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38:731-736.
  • Krainer, A. R., G. C. Conway, and D. Kozak. 1990. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 62:35-42.
  • Krainer, A. R., and T. Maniatis. 1988. RNA splicing, p. 131-206. In B. D. Hames and D. M. Glover (ed.), Frontiers in transcription and splicing. IRL Press, Oxford.
  • Krainer, A. R., T. Maniatis, B. Ruskin, and M. R. Green. 1984. Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36:993-1005.
  • Kunkel, Τ. Α., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367-382.
  • Kuo, H.-C., F. H. Nassim, and P. J. Grabowski. 1991. Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle. Science 251:1045-1050.
  • Lear, A. L., L. P. Eperon, I. M. Wheatley, and I. C. Eperon. 1990. Hierarchy of 5′ splice site preference determined in vivo. J. Mol. Biol. 211:103-115.
  • Maniatis, T. 1991. Mechanism of alternative pre-mRNA splicing. Science 251:33-34.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual, p. 188-209. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Miyazaki, H. et al. 1984. Structure of the human renin gene. Proc. Natl. Acad. Sci. USA 81:5999-6003.
  • Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459-467.
  • Naora, H., and N. J. Deacon. 1982. Relationship between the total size of exons and introns in protein-coding genes of higher eukaryotes. Proc. Natl. Acad. Sci. USA 79:6196-6200.
  • Nelson, K. K., and M. R. Green. 1990. Mechanism for cryptic splice site activation during pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 87:6253-6257.
  • Ohshima, Y., and Y. Gotoh. 1987. Signals for the selection of a splice site in pre-mRNA. Computer analysis of splice junction sequences and like sequences. J. Mol. Biol. 195:247-259.
  • Padgett, R. Α., P. J. Grabowski, Μ. Μ. Konarska, S. Seiler, and P. A. Sharp. 1986. Splicing of messenger RNA precursors. Annu. Rev. Biochem. 55:1119-1150.
  • Parent, Α., S. Zeitlin, and A. Efstratiadis. 1987. Minimal exon sequence splicing requirements for efficient in vitro splicing of monointronic nuclear pre-mRNA. J. Biol. Chem. 262:11284-11291.
  • Patterson, B., and C. Guthrie. 1991. A U-rich tract enhances usage of an alternative 3′ splice site in yeast. Cell 64:181-187.
  • Potter, H. 1987. Introduction of DNA into mammalian cells, p. 9.3.1-9.3.3. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology. J. Wiley & Sons, New York.
  • Reed, R. 1989. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3:2113-2123.
  • Reed, R., and T. Maniatis. 1985. Intron sequences involved in lariat formation during pre-mRNA splicing. Cell 41:95-105.
  • Reed, R., and T. Maniatis. 1986. A role for exon sequences and splice-site proximity in splice site selection. Cell 46:681-690.
  • Reed, R., and T. Maniatis. 1988. The role of the mammalian branchpoint sequence in pre-mRNA splicing. Genes Dev. 2:1268-1276.
  • Robberson, B. L., G. J. Cote, and S. M. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84-94.
  • Ruskin, B., and M. R. Green. 1985. Role of the 3′ splice site consensus sequence in mammalian pre-mRNA splicing. Nature (London) 317:732-734.
  • Ruskin, B., and M. R. Green. 1985. An RNA processing activity that debranches RNA lariats. Science 229:135-140.
  • Sharp, P. A. 1987. Splicing of messenger RNA precursors. Science 235:766-771.
  • Solnick, D. 1985. Alternative splicing caused by RNA secondary structure. Cell 43:667-676.
  • Solnick, D., and S. I. Lee. 1987. Amount of RNA secondary structure required to induce an alternative splice. Mol. Cell. Biol. 7:3194-3198.
  • Talerico, M., and S. M. Berget. 1990. Effect of 5′ splice site mutations on splicing of the preceding intron. Mol. Cell. Biol. 10:6299-6305.
  • Tate, V. E., M. H. Finer, H. Boedtker, and P. Doty. 1983. Chick pro-alpha2(I) collagen gene: exon location and coding potential for prepropeptide. Nucleic Acids Res. 11:91-104.
  • Traut, T. W. 1988. Do exons code for structural or functional units in proteins? Proc. Natl. Acad. Sci. USA 85:2944-2948.
  • Treisman, R., S. H. Orkin, and T. Maniatis. 1983. Specific transcription and RNA splicing defects in five cloned β-thalassemia genes. Nature (London) 302:591-596.
  • Treisman, R., S. H. Orkin, and T. Maniatis. 1983. Structural and functional defects in β-thalassemia, p. 99-121. In G. Stamatoyannopoulos and A. W. Nienhuis (ed.), Globin gene expression and hematopoietic differentiation. Alan R. Liss, New York.
  • Treisman, R., N. J. Proudfoot, M. Shander, and T. Maniatis. 1982. A single-base change at a splice site in a β0-thalassemic gene causes abnormal RNA splicing. Cell 29:903-911.
  • Turnbull-Ross, A. D., A. J. Else, and I. C. Eperon. 1988. The dependence of splicing efficiency on the length of 3′ exon. Nucleic Acids Res. 16:395-411.
  • Wieringa, B., F. Meyer, J. Reiser, and C. Weissmann. 1983. Unusual splice sites revealed by mutagenic inactivation of an authentic splice site of the rabbit β-globin gene. Nature (London) 301:38-43.
  • Zhuang, Y., A. M. Goldstein, and A. M. Weiner. 1989. UAC UAAC is the preferred branch site for mammalian mRNA splicing. Proc. Natl. Acad. Sci. USA 86:2752-2756.
  • Zhuang, Y., H. Lueng, and A. M. Weiner. 1987. The natural 5′ splice site of simian virus 40 large Τ antigen can be improved by increasing the base complementarity to U1 RNA. Mol. Cell. Biol. 7:3018-3020.
  • Zhuang, Y., and A. M. Weiner. 1986. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46:827-835.
  • Zhuang, Y., and A. M. Weiner. 1989. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes Dev. 3:1545-1552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.