0
Views
4
CrossRef citations to date
0
Altmetric
Gene Expression

Specific cis-Acting Sequence for PH08 Expression Interacts with PH04 Protein, a Positive Regulatory Factor, in Saccharomyces cerevisiae

&
Pages 785-794 | Received 05 Jul 1990, Accepted 08 Nov 1990, Published online: 31 Mar 2023

REFERENCES

  • Aimer, A., H. Rudolph, A. Hinnen, and W. Horz. 1986. Removal of positioned nucleosomes from the yeast PH05 promoter upon PH05 induction releases additional upstream activating DNA elements. EMBO J. 5:2689-2696.
  • Ammerer, G., C. P. Hunter, J. H. Rothman, G. C. Saari, L. A. Valls, and T. H. Stevens. 1986. PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol. Cell. Biol. 6:2490-2499.
  • Arndt, K. T., C. Styles, and G. R. Fink. 1987. Multiple global regulators control HIS4 transcription in yeast. Science 237:874-880.
  • Bergman, L. W., D. C. McClinton, S. L. Madden, and L. H. Preis. 1986. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83:6070-6074.
  • Cai, M., and R. W. Davis. 1990. Yeast centromere binding protein CBF1, of the helix-hoop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437-446.
  • Carthew, R. W., L. A. Chodosh, and P. A. Sharp. 1985. An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43:439-448.
  • Clark, D. W., J. S. Tkacz, and J. O. Lampen. 1982. Asparagine-linked carbohydrate does not determine the cellular location of yeast vacuolar nonspecific alkaline phosphatase. J. Bacteriol. 152:865-873.
  • Clarke, L., and J. Carbon. 1978. Functional expression of cloned yeast DNA in Escherichia coli: specific complementation of argininosuccinate lyase (argH) mutations. J. Mol. Biol. 120:517-532.
  • Hinnen, A., W. Bajwa, B. Mayhack, and H. Rudolph. 1987. Molecular aspects of acid phosphatase synthesis in Saccharomyces cerevisiae, p. 56-62. In A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil (ed.), Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, D.C.
  • Hwang, Y.-L., S. Harashima, and Y. Oshima. 1989. Improvement and application of a promoter-probe vector bearing the PHO5 gene as the indicator marker in Saccharomyces cerevisiae. J. Ferment. Bioeng. 67:1-7.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163-168.
  • Jones, E. W., G. S. Zubenko, and R. R. Parker. 1982. PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae. Genetics 102:665-677.
  • Kaneko, Y., N. Hayashi, A. Toh-e, I. Banno, and Y. Oshima. 1987. Structural characteristics of the PHO8 gene encoding repressible alkaline phosphatase in Saccharomyces cerevisiae. Gene 58:137-148.
  • Kaneko, Y., Y. Tamai, A. Toh-e, and Y. Oshima. 1985. Transcriptional and posttranscriptional control of PHO8 expression by PHO regulatory genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:248-252.
  • Kaneko, Y., A. Toh-e, I. Banno, and Y. Oshima. 1989. Molecular characterization of a specific p-nitrophenylphosphatase gene, PHO13, and its mapping by chromosome fragmentation in Saccharomyces cerevisiae. Mol. Gen. Genet. 220:133-139.
  • Kaneko, Y., A. Toh-e, and Y. Oshima. 1982. Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae. Mol. Cell. Biol. 2:127-137.
  • Lemire, J. M., T. Willcocks, H. O. Halvorson, and K. A. Bostian. 1985. Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:2131-2141.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499-560.
  • Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101:20-89.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Morrison, D. A. 1977. Transformation in Escherichia coli: cryogenic preservation of competent cells. J. Bacteriol. 132:349-351.
  • Nakao, J., A. Miyanohara, A. Toh-e, and K. Matsubara. 1986. Saccharomyces cerevisiae PHO5 promoter region: location and function of the upstream activation site. Mol. Cell. Biol. 6:2613-2623.
  • Nishiwaki, K., N. Hayashi, S. Irie, D.-H. Chung, S. Harashima, and Y. Oshima. 1987. Structure of the yeast HIS5 gene responsive to general control of amino acid biosynthesis. Mol. Gen. Genet. 208:159-167.
  • Ogawa, N., and Y. Oshima. 1990. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2224-2236.
  • Oshima, Y. 1982. Regulatory circuits for gene expression: the metabolism of galactose and of phosphate, p. 159-180. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Parent, S. A., C. M. Fenimore, and K. A. Bostian. 1985. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1:83-138.
  • Rudolph, H., and A. Hinnen. 1987. The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection. Proc. Natl. Acad. Sci. USA 84:1340-1344.
  • Ruther, U., and B. Müller-Hill. 1983. Easy identification of cDNA clones. EMBO J. 2:1791-1794.
  • Sengstag, C., and A. Hinnen. 1988. A 28-bp segment of the Saccharomyces cerevisiae PHO5 upstream activator sequence confers phosphate control to the CYCl-lacZ gene fusion. Gene 67:223-228.
  • Sutcliffe, J. G. 1979. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43:77-90.
  • Tamai, Y., A. Toh-e, and Y. Oshima. 1985. Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae. J. Bacteriol. 164:964-968.
  • Thill, G. P., R. A. Kramer, K. J. Turner, and K. A. Bostian. 1983. Comparative analysis of the 5′-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 3:570-579.
  • Toh-e, A., S. Inouye, and Y. Oshima. 1981. Structure and function of the PH082-pho4 locus controlling the synthesis of repressible acid phosphatase of Saccharomyces cerevisiae. J. Bacteriol. 145:221-232.
  • Toh-e, A., H. Nakamura, and Y. Oshima. 1976. A gene controlling the synthesis of nonspecific alkaline phosphatase in Saccharomyces cerevisiae. Biochim. Biophys. Acta 428:182-192.
  • Toh-e, A., and T. Shimauchi. 1986. Cloning and sequencing of the PHO80 gene and CEN15 of Saccharomyces cerevisiae. Yeast 2:129-139.
  • Toh-e, A., K. Tanaka, Y. Uesono, and R. D. Wickner. 1988. PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae. Mol. Gen. Genet. 214:162-164.
  • Vogel, K., W. Hörz, and A. Hinnen. 1989. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHOS upstream activation regions. Mol. Cell. Biol. 9:2050-2057.
  • Woolford, C. A., L. B. Daniels, F. J. Park, E. W. Jones, J. N. van Arsdell, and M. A. Innis. 1986. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol. Cell. Biol. 6:2500-2510.
  • Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103-119.
  • Yoshida, K., Z. Kuromitsu, N. Ogawa, K. Ogawa, and Y. Oshima. 1987. Regulatory circuit for phosphatase synthesis in Saccharomyces cerevisiae, p. 49-55. In A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil (ed.), Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, D.C.
  • Yoshida, K., Z. Kuromitsu, N. Ogawa, and Y. Oshima. 1989. Mode of expression of the positive regulatory genes PHO2 and PHO4 of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Gen. Genet. 217:31-39.
  • Yoshida, K., N. Ogawa, and Y. Oshima. 1989. Function of the PHO regulatory genes for repressible acid phosphatase synthesis in Saccharomyces cerevisiae. Mol. Gen. Genet. 217:40-46.
  • Zubenko, G. S., F. J. Park, and E. W. Jones. 1983. Mutations in PEP4 locus of Saccharomyces cerevisiae block final step in maturation of two vacuolar hydrolases. Proc. Natl. Acad. Sci. USA 80:510-514.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.