12
Views
36
CrossRef citations to date
0
Altmetric
Gene Expression

Complex Formation by Positive and Negative Translational Regulators of GCN4

, , &
Pages 3217-3228 | Received 18 Jan 1991, Accepted 27 Mar 1991, Published online: 01 Apr 2023

References

  • Abastado, J. P., P. F. Miller, B. M. Jackson, and A. G. Hinnebusch. 1991. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol. Cell. Biol. 11:486-496.
  • Ahmad, M. F., N. Nasrin, A. C. Banerjee, and N. K. Gupta. 1985. Purification and properties of eukaryotic initiation factor 2 and its ancillary protein factor (Co-eIF-2A) from yeast Saccharomyces cerevisiae. J. Biol. Chem. 260:6955-6959.
  • Anthony, D. D., T. G. Kinzy, and W. C. Merrick. 1990. Affinity labeling of eukaryotic initiation factor and elongation factor 1 with GTP analogs. Arch. Biochem. Biophys. 281:157-162.
  • Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345-346.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
  • Burke, R. L., P. Tekamp-Olson, and R. Najarian. 1983. The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. J. Biol. Chem. 258:2193-2201.
  • Cigan, A. M., and A. G. Hinnebusch. Unpublished data.
  • Cigan, A. M., E. K. Pabich, and T. F. Donahue. 1988. Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2964-2975.
  • Cigan, A. M., E. K. Pabich, L. Feng, and T. F. Donahue. 1989. Yeast translation initiation suppressor sui2 encodes the alpha subunit of eukaryotic initiation factor 2 and shares identity with the human alpha subunit. Proc. Natl. Acad. Sci. USA 86:2784-2788.
  • De Benedetti, A., and C. Baglioni. 1983. Phosphorylation of initiation factor eIF2a, binding of mRNA to 48S complexes, and its reutilization in initiation of protein synthesis. J. Biol. Chem. 258:14556-14562.
  • Dholakia, J. N., and A. J. Wahba. 1988. Phosphorylation of the guanine nucleotide exchange factor from rabbit reticulocytes regulates its activity in polypeptide chain initiation. Proc. Natl. Acad. Sci. USA 85:51-54.
  • Dieckmann, C. L., and A. Tzagoloff. 1985. Assembly of the mitochondrial membrane system. J. Biol. Chem. 260:1513-1520.
  • Donahue, T. F., A. M. Cigan, E. K. Pabich, and B. Castilho-Valavicius. 1988. Mutations at a Zn(II) finger motif in the yeast eIF-2ß gene alter ribosomal start-site selection during the scanning process. Cell 54:621-632.
  • Feinberg, A. P., and B. Vogelstein. 1984. Addendum: a technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137:266-267.
  • Feinberg, B., C. S. McLaughlin, and K. Moldave. 1982. Analysis of temperature-sensitive mutant tsl87 of Saccharomyces cerevisiae altered in a component required for the initiation of protein synthesis. J. Biol. Chem. 257:10846-10851.
  • Foiani, M., A. M. Cigan, C. J. Paddon, S. Harashima, and A. G. Hinnebusch. 1991. GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3203-3216.
  • Gross, M., R. Redman, and D. A. Kaplansky. 1985. Evidence that the primary effect of phosphorylation of eukaryotic initiation factor 2 alpha in rabbit reticulocyte lysate is inhibition of the release of eukaryotic initiation factor-2 · GDP from 60S ribosomal subunits. J. Biol. Chem. 260:9491-9500.
  • Gross, M., and M. S. Rubino. 1989. Regulation of eukaryotic initiation factor-2B by polyamines and amino acid starvation in rabbit reticulocyte lysate. J. Biol. Chem. 264:21879-21884.
  • Gross, M., M. Wing, C. Rundquist, and M. S. Rubino. 1987. Evidence that phosphorylation of eIF-2(a) prevents the eIF-2B-mediated dissociation of eIF-2 · GDP from the 60S subunit of complete initiation complexes. J. Biol. Chem. 262:6899-6907.
  • Hanic-Joyce, P. J., R. A. Singer, and G. C. Johnston. 1987. Molecular characterization of the yeast PRT1 gene in which mutations affect translation initiation and regulation of cell proliferation. J. Biol. Chem. 262:2845-2851.
  • Hannig, E. H., N. P. Williams, R. C. Wek, and A. G. Hinnebusch. 1990. The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae. Genetics 126:549-562.
  • Hannig, E. M., and A. G. Hinnebusch. 1988. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function. Mol. Cell. Biol. 8:4808-4820.
  • Harashima, S., E. M. Hannig, and A. G. Hinnebusch. 1987. Interactions between positive and negative regulators of GCN4 controlling gene expression and entry into the yeast cell cycle. Genetics 117:409-419.
  • Harashima, S., and A. G. Hinnebusch. 1986. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3990-3998.
  • Hartwell, L. H., and C. S. McLaughlin. 1969. A mutant of yeast apparently defective in the initiation of protein synthesis. Proc. Natl. Acad. Sci. USA 62:468-474.
  • Hill, D. E., and K. Struhl. 1988. Molecular characterization of GCD1, a yeast gene required for general control of amino acid biosynthesis and cell-cycle initiation. Nucleic Acids Res. 16:9253-9265.
  • Hinnebusch, A. G. 1985. A hierarchy of trans-acting factors modulate translation of an activator of amino acid biosynthetic genes in yeast. Mol. Cell. Biol. 5:2349-2360.
  • Hinnebusch, A. G. 1988. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 52:248-273.
  • Hinnen, A., J. B. Hicks, and G. R. Fink. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929-1933.
  • Ito, H., Y. Fukada, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacterid. 153:163-168.
  • Konieczny, A., and B. Safer. 1983. Purification of the eukaryotic initiation factor 2-eukaryotic initiation factor 2B complex and characterization of its guanine nucleotide exchange activity during protein synthesis initiation. J. Biol. Chem. 258:3402-3408.
  • Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-685.
  • Martin, T. E., and L. H. Hartwell. 1970. Resistance of active yeast ribosomes to dissociation by KCl. J. Biol. Chem. 245:1504-1508.
  • Matts, R., D. Levin, and I. London. 1983. Effect of phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 on the function of reversing factor in the initiation of protein synthesis. Proc. Natl. Acad. Sci. USA 80:2559-2563.
  • Moldave, K. 1985. Eukaryotic protein synthesis. Annu. Rev. Biochem. 54:1109-1149.
  • Moldave, K., and C. S. McLaughlin. 1988. The analysis of temperature-sensitive mutants of Saccharomyces cerevisiae altered in components required for protein synthesis, p. 271-281. In M. F. Tuite (ed.), Genetics of translation. Springer-Verlag, Berlin.
  • Mueller, P. P., S. Harashima, and A. G. Hinnebusch. 1987. A segment of GCN4 mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript. Proc. Natl. Acad. Sci. USA 84:2863-2867.
  • Mueller, P. P., and A. G. Hinnebusch. 1986. Multiple upstream AUG codons mediate translational control of GCN4. Cell 45:201-207.
  • Paddon, C. J., E. M. Hannig, and A. G. Hinnebusch. 1989. Amino acid sequence similarity between GCN3 and GCD2, positive and negative translational regulators of GCN4: evidence for antagonism by competition. Genetics 122:551-559.
  • Paddon, C. J., and A. G. Hinnebusch. 1989. gcdl2 mutations are gc"3-dependent alleles of GCD2, a negative regulator of GCN4 in the general amino acid control of Saccharomyces cerevisiae. Genetics 122:543-550.
  • Parent, S. A., C. M. Fenimore, and K. A. Bostian. 1985. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1:83-138.
  • Peterson, D. T., W. C. Merrick, and B. Safer. 1979. Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80S initiation complex formation. J. Biol. Chem. 254:2509-2519.
  • Rowlands, A. G., K. S. Montine, E. C. Henshaw, and R. Panniers. 1988. Physiological stresses inhibit guanine-nucleotide-exchange factor in Ehrlich cells. Eur. J. Biochem. 175:93-99.
  • Safer, B. Personal communication.
  • Salimans, M., H. Goumans, H. Amesz, R. Beene, and H. Voorma. 1984. Regulation of protein synthesis in eukaryotes. Mode of action of eRF, an eIF-2-recycling factor from rabbit reticulocytes in GDP/GTP exchange. Eur. J. Biochem. 145:91-98.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1974. Methods of yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Siekierka, J., V. Manne, and S. Ochoa. 1984. Mechanism of translational control by partial phosphorylation of the alpha subunit of eukaryotic initiation factor 2. Proc. Natl. Acad. Sci. USA 81:352-356.
  • Thomas, N. S. B., R. L. Matts, D. H. Levin, and I. M. London. 1985. The 60S ribosomal subunit as a carrier of eukaryotic initiation factor 2 and the site of reversing factor activity during protein synthesis. J. Biol. Chem. 260:9860-9866.
  • Thomas, N. S. B., R. Matts, R. Petryshyn, and I. London. 1984. Distribution of reversing factor in reticulocyte lysates during active protein synthesis and on inhibition by heme deprivation or double-stranded RNA. Proc. Natl. Acad. Sci. USA 81:6998-7002.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350-4354.
  • Tzamarias, D., D. Alexandraki, and G. Thireos. 1986. Multiple cw-acting elements modulate the translational efficiency of GCN4 mRNA in yeast. Proc. Natl. Acad. Sci. USA 83:4849-4853.
  • Tzamarias, D., I. Roussou, and G. Thireos. 1989. Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain initiation. Cell 57:947-954.
  • Warner, J. R., G. Mitra, W. F. Schwindinger, M. Studeny, and H. M. Fried. 1985. Saccharomyces cerevisiae coordinates accumulation of yeast ribosomal proteins by modulating mRNA splicing, translational initiation, and protein turnover. Mol. Cell. Biol. 5:1512-1521.
  • Wek, R. C., B. M. Jackson, and A. G. Hinnebusch. 1989. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc. Natl. Acad. Sci. USA 86:4579-4583.
  • Williams, N. P., A. G. Hinnebusch, and T. F. Donahue. 1989. Mutations in the structural genes for eukaryotic initiation factors 2a and 2ß of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA. Proc. Natl. Acad. Sci. USA 86:7515-7519.
  • Wolfner, M., D. Yep, F. Messenguy, and G. R. Fink. 1975. Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J. Mol. Biol. 96:273-290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.