3
Views
2
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

In Vivo Characterization of the Saccharomyces cerevisiae Centromere DNA Element I, a Binding Site for the Helix-Loop-Helix Protein CPF1

, &
Pages 3545-3553 | Received 07 Jan 1991, Accepted 11 Apr 1991, Published online: 31 Mar 2023

REFERENCES

  • Aggarwal, A. K., D. W. Rodgers, M. Drottar, M. Ptashne, and S. C. Harrison. 1988. Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242:899-907.
  • Baker, R. E., M. Fitzgerald-Hayes, and T. C. O’Brien. 1989. Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site. J. Biol. Chem. 264:10843-10850.
  • Baker, R. E., and D. C. Masison. 1990. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol. Cell. Biol. 10:2458-2467.
  • Beckmann, H., L.-K. Su, and T. Kadesh. 1990. TFE3: a helixloop-helix protein that activates transcription through the immunoglobulin enhances µE3 motif. Genes Dev. 4:167-179.
  • Bloom, K. S., and J. Carbon. 1982. Yeast centromere DNA is in a highly ordered structure in chromosomes and small circular minichromosomes. Cell 29:305-317.
  • Bram, R. J., and R. D. Kornberg. 1987. Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol. Cell. Biol. 7:403-409.
  • Braun, T., B. Winter, E. Bober, and H. H. Arnold. 1990. Transcriptional activation domain of the muscle-specific gene-regulatory protein myf5. Nature (London) 346:663-665.
  • Cai, M., and R. W. Davis. 1989. Purification of a yeast centromere-binding protein that is able to distinguish single basepair mutations in its recognition site. Mol. Cell. Biol. 9:2544-2550.
  • Cai, M., and R. W. Davis. 1990. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437-446.
  • Carr, C. S., and P. A. Sharp. 1990. A helix-loop-helix protein related to the immunoglobulin E box-binding proteins. Mol. Cell. Biol. 10:4384-4388.
  • Chodosh, L. A., S. Buratowski, and P. A. Sharp. 1989. A yeast protein possesses the DNA-binding properties of the adenovirus major late transcription factor. Mol. Cell. Biol. 9:820-822.
  • Chodosh, L. A., R. W. Carthew, J. G. Morgan, G. R. Carbtree, and P. A. Sharp. 1987. The adenovirus major late transcription factor activates the rat gamma-fibrinogen promoter. Science 238:684-688.
  • Clarke, L. 1990. Centromeres of budding and fission yeast. Trends Genet. 6:150-154.
  • Clarke, L., H. Amstutz, B. Fishel, and J. Carbon. 1986. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 83:8253-8257.
  • Clarke, L., and J. Carbon. 1980. Isolation of yeast centromere and construction of functional small circular chromosomes. Nature (London) 287:504-509.
  • Cottarel, G., J. H. Shero, P. Hieter, and J. H. Hegemann. 1989. A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:3342-3349.
  • Cumberledge, S., and J. Carbon. 1987. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203-212.
  • Dorsman, J. C., W. C. van Heeswijk, and L. A. Grivell. 1988. Identification of two factors which bind to the upstream sequences of a number of nuclear genes coding for mitochondrial proteins and to genetic elements important for cell division in yeast. Nucleic Acids Res. 16:7287-7301.
  • Fitzgerald-Hayes, M., L. Clarke, and J. Carbon. 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235-244.
  • Funk, M., J. H. Hegemann, and P. Philippsen. 1989. Chromatin digestion with restriction endonucleases reveals 150-160 bp of protected DNA in the centromere of chromosome 14 in Saccharomyces cerevisiae. Mol. Gen. Genet. 219:153-160.
  • Funk, M., J. H. Hegemann, and P. Philippsen. Unpublished data.
  • Gaudet, A., and M. Fitzgerald-Hayes. 1987. Alterations in the adenine-plus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:68-75.
  • Gaudet, A., and M. Fitzgerald-Hayes. 1989. Mutations in CEN3 cause aberrant chromosome segregation during meiosis in Saccharomyces cerevisiae. Genetics 121:477-489.
  • Hall, R. K., and W. L. Taylor. 1989. Transcription factor IIIA gene expression in Xenopus oocytes utilizes a transcription factor similar to the major late transcription factor. Mol. Cell. Biol. 9:5003-5011.
  • Hegemann, J. H., R. D. Pridmore, R. Schneider, and P. Philippsen. 1986. Mutations in the right boundary of Saccharomyces cerevisiae centromere 6 lead to nonfunctional or partially functional centromeres. Mol. Gen. Genet. 205:305-311.
  • Hegemann, J. H., J. H. Shero, G. Cottarel, P. Philippsen, and P. Hieter. 1988. Mutational analysis of centromere DNA from chromosome 6 of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2523-2535.
  • Hieter, P., C. Mann, M. Snyder, and R. W. Davis. 1985. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40:381-392.
  • Hieter, P., D. Pridmore, J. H. Hegemann, M. Thomas, R. W. Davis, and P. Philippsen. 1985. Functional selection and analysis of yeast centromeric DNA. Cell 42:913-921.
  • Hope, I. A., and K. Struhl. 1987. GCN4, a eucaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J. 6:2781-2784.
  • Huberman, J. A., R. D. Pridmore, D. Jäger, B. Zonneveld, and P. Philippsen. 1986. Centromeric DNA from Saccharomyces uvarum is functional in Saccharomyces cerevisiae. Chromosoma 94:162-168.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact cells treated with alkali cations. J. Bacteriol. 153:163-168.
  • Jäger, D. 1990. Ph.D. thesis, University of Giessen, Giessen, Federal Republic of Germany.
  • Jehn, B., R. Niedenthal, and J. H. Hegemann. Unpublished data.
  • Jiang, W. 1990. Ph.D. thesis, University of Giessen, Giessen, Federal Republic of Germany.
  • Jiang, W., and P. Philippsen. 1989. Purification of a protein binding to the CDEI subregion of Saccharomyces cerevisiae centromere DNA. Mol. Cell. Biol. 9:5585-5593.
  • Koudelka, G. B., S. C. Harrison, and M. Ptashne. 1987. Effect of non-contacted bases on the affinity of 434 operator for 434 repressor and Cro. Nature (London) 326:886-888.
  • Kramer, W., V. Drutsa, H.-W. Jansen, B. Kramer, M. Pflugfelder, and H.-J. Fritz. 1984. The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 14:9441-9456.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequencespecific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823-831.
  • Lea, D. E., and C. A. Coulson. 1949. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264-285.
  • Mellor, J., W. Jiang, M. Funk, J. Rathjen, C. A. Barnes, T. Hinz, J. H. Hegemann, and P. Philippsen. 1990. CPF1, a yeast protein which functions in centromeres and promotores. EMBO J. 9:4017-4026.
  • Moncollin, V., R. Stalder, J.-M. Verdier, A. Sentenac, and J.-M. Egly. 1990. A yeast homolog of the human UEF stimulates transcription from the adenovirus 2 major late promoter in yeast and in mammalian cell-free systems. Nucleic Acids Res. 18:4817-4823.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537-544.
  • Nakaseko, Y., Y. Adachi, S. Funahashi, O. Niwa, and M. Yanagida. 1986. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 5:1011-1021.
  • Newlon, C. S. 1988. Yeast chromosome replication and segregation. Microbiol. Rev. 52:568-601.
  • Ng, R., and J. Carbon. 1987. Mutational and in vitro proteinbinding studies on centromere DNA from Saccharomyces cerevisiae. Mol. Cell. Biol. 7:4522-4534.
  • Ogawa, N., and Y. Oshima. 1990. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2224-2236.
  • Otwinowski, Z., R. W. Schevitz, R.-G. Zhang, C. L. Lawson, A. Joachimiak, R. Q. Marmorstein, B. F. Luisi, and P. B. Sigler. 1988. Crystal structure of trp repressor/operator complex at atomic resolution. Nature (London) 335:321-329.
  • Pabo, C. O., and R. T. Sauer. 1984. Protein-DNA recognition. Annu. Rev. Biochem. 53:293-321.
  • Panzeri, L., L. Landonio, A. Stotz, and P. Philippsen. 1985. Role of conserved sequence elements in yeast centromere DNA. EMBO J. 4:1867-1874.
  • Sawadogo, M., and R. G. Roeder. 1985. Interaction of a genespecific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43:165-175.
  • Scotto, K. W., H. Kaulen, and R. G. Roeder. 1989. Positive and negative regulation of the gene for transcription factor IIIA in Xenopus laevis oocytes. Genes Dev. 3:651-662.
  • Shero, J., M. Koval, F. Spencer, R. Palmer, P. Hieter, and D. Koshland. 1991. Analysis of chromosome segregation in Saccharomyces cerevisiae. Methods Enzymol. 194:749-773.
  • Vogel, K., W. Hörz, and A. Hinnen. 1989. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions. Mol. Cell. Biol. 9:2050-2057.
  • Wenink, P., and P. Philippsen. Unpublished data.
  • Wilmen, A., and J. H. Hegemann. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.