2
Views
1
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Displacement of Xenopus Transcription Factor IIIA from a 5S rRNA Gene by a Transcribing RNA Polymerase

&
Pages 3978-3986 | Received 18 Dec 1990, Accepted 03 May 1991, Published online: 01 Apr 2023

REFERENCES

  • Bateman, E., and M. R. Paule. 1988. Promoter occlusion during ribosomal RNA transcription. Cell 54:985–992.
  • Bieker, J. J., P. L. Martin, and R. G. Roeder. 1985. Formation of a rate-limiting intermediate in 5S RNA gene transcription. Cell 40:119–127.
  • Bogenhagen, D. F., S. Sakonju, and D. D. Brown. 1980. A control region in the center of the 5S RNA gene directs specific initiation of transcription. II. The 3′ border of the region. Cell 19:27–35.
  • Bogenhagen, D. F., W. M. Wormington, and D. D. Brown. 1982. Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state. Cell 28:413–421.
  • Boulanger, P. A., S. K. Yoshinaga, and A. J. Berk. 1987. DNA-binding properties and characterization of human transcription factor TFIIIC2. J. Biol. Chem. 262:15098–15105.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Braun, B. R., D. L. Riggs, G. A. Kassavetis, and E. P. Geiduschek. 1989. Multiple states of protein-DNA interaction in the assembly of transcription complexes on Saccharomyces cerevi- siae 5S ribosomal RNA genes. Proc. Natl. Acad. Sci. USA 86:2530–2534.
  • Chamberlin, M., and J. Ring. 1973. Characterization of T7- specific ribonucleic acid polymerase. II Inhibitors of the enzyme and their application to the study of the enzymatic reaction. J. Biol. Chem. 248:2245–2250.
  • Cromlish, J. A., and R. G. Roeder. 1989. Human transcription factor IIIC (TFIIIC). Purification, polypeptide structure, and the involvement of thiol groups in specific DNA binding. J. Biol. Chem. 264:18100–18109.
  • Darby, M. K., M. T. Andrews, and D. D. Brown. 1988. Transcription complexes that program Xenopus 5S RNA genes are stable in vivo. Proc. Natl. Acad. Sci. USA 85:5516–5520.
  • Deuschle, U., R. Gentz, and H. Bujard. 1986. Lac repressor blocks transcribing RNA polymerase and terminates transcription. Proc. Natl. Acad. Sci. USA 83:4134–4137.
  • Deuschle, U., R. A. Hipskind, and H. Bujard. 1990. RNA polymerase II transcription blocked by Escherichia coli lac repressor. Science 248:480–483.
  • Engelke, D. R., S. Y. Ng, B. S. Shastry, and R. G. Roeder. 1980. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19:717–728.
  • Fradkin, L. G., S. K. Yoshinaga, A. J. Berk, and A. Dasgupta. 1989. Human transcription factor TFIIIC2 specifically interacts with a unique sequence in the Xenopus laevis 5S rRNA gene. Mol. Cell. Biol. 9:4941–4950.
  • Gabrielsen, O. S., N. Marzouki, A. Ruet, A. Sentenac, and P. Fromageot. 1989. Two polypeptide chains in yeast transcription factor τ interact with DNA. J. Biol. Chem. 264:7505–7511.
  • Gaëta, B. A., S. J. Sharp, and T. S. Stewart. 1990. Saturation mutagenesis of the Drosophila tRNAArg gene B-Box intragenic promoter element: requirements for transcription activation and stable complex formation. Nucleic Acids Res. 18:1541–1548.
  • Geiduschek, E. P., and G. P. Tocchini-Valentini. 1988. Transcription by RNA polymerase III. Annu. Rev. Biochem. 57: 873–914.
  • Hanas, J. S., D. F. Bogenhagen, and C. W. Wu. 1984. Binding of Xenopus transcription factor A to 5S RNA and to single stranded DNA. Nucleic Acids Res. 12:2745–2758.
  • Hayes, J., T. D. Tullius, and A. P. Wolffe. 1989. A proteinprotein interaction is essential for stable complex formation on a 5 S RNA gene. J. Biol. Chem. 264:6009–6012.
  • Ikeda, R. A., and C. C. Richardson. 1986. Interactions of the RNA polymerase of bacteriophage T7 with its promoter during binding and initiation of transcription. Proc. Natl. Acad. Sci. USA 83:3614–3618.
  • Jahn, D., E. Wingender, and K. H. Seifart. 1987. Transcription complexes for various class III genes differ in parameters of formation and stability towards salt. J. Mol. Biol. 193:303–313.
  • Johnson, D. L., and S. L. Wilson. 1989. Identification of a 150-kilodalton polypeptide that copurifies with yeast TFIIIC and binds specifically to tRNA genes. Mol. Cell. Biol. 9:2018–2024.
  • Kassavetis, G. A., B. R. Braun, L. H. Nguyen, and E. P. Geiduschek. 1990. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60:235–245.
  • Kassavetis, G. A., D. L. Riggs, R. Negri, L. H. Nguyen, and E. P. Geiduschek. 1989. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol. Cell. Biol. 9:2551–2566.
  • Klekamp, M. S., and P. A. Weil. 1986. Partial purification and characterization of the Saccharomyces cerevisiae transcription factor TFIIIB. J. Biol. Chem. 261:2819–2827.
  • Klekamp, M. S., and P. A. Weil. 1987. Properties of yeast class III gene transcription factor TFIIIB. Implications regarding mechanism of action. J. Biol. Chem. 262:7878–7883.
  • Klemenz, R., D. J. Stillman, and E. P. Geiduschek. 1982. Specific interactions of Saccharomyces cerevisiae proteins with a promoter region of eukaryotic tRNA genes. Proc. Natl. Acad. Sci. USA 79:6191–6195.
  • Kuhn, A., I. Bartsch, and I. Grummt. 1990. Specific interaction of the murine transcription termination factor TTFI with class-I RNA polymerases. Nature (London) 344:559–562.
  • Lassar, A. B., P. L. Martin, and R. G. Roeder. 1983. Transcription of class III genes: formation of preinitiation complexes. Science 222:740–748.
  • Lorch, Y., J. W. LaPointe, and R. D. Kornberg. 1987. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49:203–210.
  • Lorch, Y., J. W. LaPointe, and R. D. Kornberg. 1988. On the displacement of histones from DNA by transcription. Cell 55:743–744.
  • Losa, R., and D. D. Brown. 1987. A bacteriophage RNA polymerase transcribes in vitro through a nucleosome core without displacing it. Cell 50:801–808.
  • Majowski, K., H. Mentzel, and T. Pieler. 1987. A split binding site for TFIIIC on the Xenopus 5S gene. EMBO J. 6:3057–3063.
  • Miller, J., A. D. McLachlan, and A. Klug. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609–1614.
  • Morse, R. H. 1989. Nucleosomes inhibit both transcriptional initiation and elongation by RNA polymerase III in vitro. EMBO J. 8:2343–2351.
  • Parsons, M. C., and P. A. Weil. 1990. Purification and characterization of Saccharomyces cerevisiae transcription factor TFIIIC. Polypeptide composition defined with polyclonal antibodies. J. Biol. Chem. 265:5095–5103.
  • Peterson, R. C., J. L. Doering, and D. D. Brown. 1980. Characterization of two Xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA. Cell 20:131–141.
  • Pieler, T., J. Hamm, and R. G. Roeder. 1987. The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell 48:91–100.
  • Sakonju, S., and D. D. Brown. 1982. Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 31:395–405.
  • Sakonju, S., D. D. Brown, D. Engelke, S. Y. Ng, B. S. Shastry, and R. G. Roeder. 1981. The binding of a transcription factor to deletion mutants of a 5S ribosomal RNA gene. Cell 23:665–669.
  • Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51:660–672.
  • Schaack, J., S. Sharp, T. Dingermann, and D. Söll. 1983. Transcription of eukaryotic tRNA genes in vitro. II. Formation of stable complexes. J. Biol. Chem. 258:2447–2453.
  • Schneider, H. R., R. Waldschmidt, D. Jahn, and K. H. Seifart. 1989. Purification of human transcription factor IIIC and its binding to the gene for ribosomal 5S RNA. Nucleic Acids Res. 17:5003–5016.
  • Schultz, P., N. Marzouki, C. Marck, A. Ruet, P. Oudet, and A. Sentenac. 1989. The two DNA-binding domains of yeast transcription factor τ as observed by scanning transmission electron microscopy. EMBO J. 8:3815–3824.
  • Segall, J., T. Matsui, and R. G. Roeder. 1980. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J. Biol. Chem. 255:11986–11991.
  • Setzer, D. R., and D. D. Brown. 1985. Formation and stability of the 5 S RNA transcription complex. J. Biol. Chem. 260:2483–2492.
  • Shastry, B. S., S. Y. Ng, and R. G. Roeder. 1982. Multiple factors involved in the transcription of class III genes in Xenopus laevis. J. Biol. Chem. 257:12979–12986.
  • Smith, D. R., I. J. Jackson, and D. D. Brown. 1984. Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell 37:645–652.
  • Strothkamp, R. E., J. L. Oakley, and J. E. Coleman. 1980. Promoter melting by T7 ribonucleic acid polymerase as detected by single-stranded endonuclease digestion. Biochemistry 19: 1074–1080.
  • Wolffe, A. P. 1988. Transcription fraction TFIIIC can regulate differential Xenopus 5S RNA gene transcription in vitro. EMBO J. 7:1071–1079.
  • Wolffe, A. P., E. Jordan, and D. D. Brown. 1986. A bacteriophage RNA polymerase transcribes through a Xenopus 5S RNA gene transcription complex without disrupting it. Cell 44:381–389.
  • Yoshinaga, S. K., P. A. Boulanger, and A. J. Berk. 1987. Resolution of human transcription factor TFIIIC into two functional components. Proc. Natl. Acad. Sci. USA 84:3585–3589.
  • Yoshinaga, S. K., N. D. L’Etoile, and A. J. Berk. 1989. Purification and characterization of transcription factor IIIC2. J. Biol. Chem. 264:10726–10731.
  • Zwieb, C., and R. S. Brown. 1990. Absence of substantial bending in Xenopus laevis transcription factor IIIA-DNA complexes. Nucleic Acids Res. 18:583–587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.