2
Views
11
CrossRef citations to date
0
Altmetric
Cell Growth and Development

E1A Induces Phosphorylation of the Retinoblastoma Protein Independently of Direct Physical Association between the E1A and Retinoblastoma Products

, &
Pages 4253-4265 | Received 15 Apr 1991, Accepted 20 May 1991, Published online: 01 Apr 2023

REFERENCES

  • Arion, D., L. Meijer, L. Brizuela, and D. Beach. 1988. cdc2 is a component of the M phase-specific histone Hl kinase: evidence for identity with MPF. Cell 55:371–378.
  • Bagchi, S., P. Raychaudhuri, and J. R. Nevins. 1990. Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A transactivation. Cell 62:659–669.
  • Blow, J. J., and P. Nurse. 1990. A cdc2-like protein is involved in the initiation of DNA replication in Xenopus egg extracts. Cell 62:855–862.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Brizuela, L., G. Draetta, and D. Beach. 1987. pl3suc1 acts in the fission yeast cell cycle as a component of the p34cdc2 protein kinase. EMBO J. 6:3507–3514.
  • Brizuela, L., G. Draetta, and D. Beach. 1989. Activation of human CDC2 protein as a histone Hl kinase is associated with complex formation with the p62 subunit. Proc. Natl. Acad. Sci. USA 86:4362–4366.
  • Buchkovich, K., L. A. Duffy, and E. Harlow. 1989. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105.
  • Carlock, L. R., and N. C. Jones. 1981. Transformation-defective mutant of adenovirus type 5 containing a single altered E1A mRNA species. J. Virol. 40:657–664.
  • Cavanee, W. K., T. P. Dryja, R. A. Phillips, W. F. Benedict, R. Godbout, B. Gallie, A. L. Murphree, L. C Strong, and R. L. White. 1983. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature (London) 305:779–784.
  • Chen, P.-L., P. Scully, J.-Y. Shew, J. Y. J. Wang, and W.-H. H. 1989. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58:1193–1198.
  • Chow, L. T., T. R. Broker, and J. B. Lewis. 1979. Complex splicing patterns of RNAs from the early regions of adenovirus 2. J. Mol. Biol. 134:265–303.
  • Cooper, J. A., and P. Whyte. 1989. RB and the cell cycle: entrance or exit? Cell 58:1009–1011.
  • DeCaprio, J. A., J. W. Ludlow, J. Figge, J.-Y. Shew, C.-M. Huang, W.-H. Lee, E. Marsilio, E. Paucha, and D. M. Livingston. 1988. SV40 large T antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283.
  • DeCaprio, J. A., J. W. Ludlow, D. Lynch, Y. Furukawa, J. Griffin, H. Piwnica-Worms, C.-M. Huang, and D. M. Livingston. 1989. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58:1085–1095.
  • Draetta, G. 1990. Cell cycle control in eucaryotes: molecular mechanisms of cdc2 activation. Trends Biochem. Sci. 15:378–383.
  • Draetta, G., and D. Beach. 1988. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54:17–26.
  • Draetta, G., D. Beach, and E. Moran. 1988. Synthesis of p34, the mammalian homolog of the yeast cdc2+/CDC28 protein kinase, is stimulated during adenovirus-induced proliferation of primary baby rat kidney cells. Oncogene 2:553–557.
  • Draetta, G., L. Brizuela, J. Potashkin, and D. Beach. 1987. Identification of p34 and pl3, human homologs of the cell cycle regulators of fission yeast encoded by cdc+ and suc+. Cell 50:319–325.
  • Draetta, G., H. Piwnica-Worms, D. Morrison, B. Druker, T. Roberts, and D. Beach. 1988. Human cdc2 protein kinase is a major cell cycle regulated tyrosine kinase substrate. Nature (London) 336:738–744.
  • Dyson, N., P. Howley, K. Munger, and E. Harlow. 1989. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934-937.
  • Egan, C., S. T. Bayley, and P. E. Branton. 1989. Binding of the RB1 protein to E1A products is required for adenovirus transformation. Oncogene 4:383–388.
  • Egan, C., T. N. Jelsma, J. A. Howe, S. T. Bayley, B. Ferguson, and P. E. Branton. 1988. Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol. Cell. Biol. 8:3955–3959.
  • Friend, S. H., R. Bernards, S. Rogelj, R. A. Weinberg, J. M. Rapaport, D. M. Alberts, and T. P. Dryja. 1986. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature (London) 323:643–646.
  • Friend, S. H., J. M. Horowitz, M. R. Gerber, X.-F. Wang, E. Bogenmann, F. P. Li, and R. A. Weinberg. 1987. Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc. Natl. Acad. Sci. USA 84:9059–9063.
  • Fung, Y.-K. T., A. L. Murphree, A. T’Ang, J. Qian, S. H. Hinrichs, and W. F. Benedict. 1987. Structural evidence for the authenticity of the human retinoblastoma gene. Science 236: 1657–1661.
  • Furukawa, Y., J. A. DeCaprio, A. Freedman, Y. Kanakura, M. Nakamura, T. J. Ernst, D. M. Livingston, and J. D. Griffin. 1990. Expression and state of phosphorylation of the retinoblastoma susceptibility gene product in cycling and noncycling human hematopoietic cells. Proc. Natl. Acad. Sci. USA 87: 2770–2774.
  • Furukawa, Y., H. Piwnica-Worms, T. J. Ernst, Y. Kanakura, and J. D. Griffin. 1990. cdc2 gene expression at the G1 to S transition in human T lymphocytes. Science 250:805–808.
  • Giordano, A., C. McCall, P. Whyte, and B. R. Franza. 1991. Human cyclin A and the retinoblastoma protein interact with similar but distinguishable sequences in the adenovirus E1A gene product. Oncogene 6:481–486. Cell 58:981–990.
  • Giordano, A., P. Whyte, E. Harlow, B. R. Franza, Jr., D. Beach, and G. Draetta. 1989. A 60 kd cdc2 associated polypeptide complexes with the E1A proteins in adenovirus-infected cells.
  • Glenn, G. M., and R. P. Ricciardi. 1985. Adenovirus 5 early region 1A host range mutants hr3, hr4, and hr5 contain point mutations which generate single amino acid substitutions. J. Virol. 56:66–74.
  • Graham, F. O., J. Smiley, W. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59–72.
  • Harlow, E., L. V. Crawford, D. C. Pim, and N. M. Williamson. 1981. Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 39:861–869.
  • Harlow, E., B. R. Franza, Jr., and C. Schley. 1985. Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. J. Virol. 55:533–546.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Houweling, A., P. J. van den Elsen, and A. J. van der Eb. 1980. Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105:537–550.
  • Howe, J. A., J. S. Mymryk, C. Egan, P. E. Branton, and S. T. Bayley. 1990. Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc. Natl. Acad. Sci. USA 87:5883–5887.
  • Jelsma, T. N., J. S. Howe, J. S. Mymryk, C. M. Evelegh, N. F. A. Cunniff, and S. T. Bayley. 1989. Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virology 170:120–130.
  • Knudson, A. G., Jr. 1971. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68:820–823.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Langan, T. A., J. Gautier, M. Lohka, R. Hollingsworth, S. Moreno, P. Nurse, J. Mailer, and R. A. Sclafani. 1989. Mammalian growth-associated Hl histone kinase: a homolog of cdc2+/ CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol. Cell. Biol. 9:3860–3868.
  • Lee, E. Y.-H. P., H. To, J.-Y. Shew, R. Bookstein, P. Scully, and W.-H. H. 1988. Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241:218–221.
  • Lee, W.-H., R. Bookstein, F. Hong, L.-J. Young, J.-Y. Shew, and E. Y.-H. P. Lee. 1987. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235:1394-1399.
  • Lee, W.-H., J. Y. Shew, F. D. Hong, T. W. Sery, L. A. Donoso, L.-J. Young, R. Bookstein, and E. Y.-H. P. Lee. 1987. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature (London) 329:642–645.
  • Lillie, J. W., M. Green, and M. R. Green. 1986. An adenovirus E1A protein region required for transformation and transcriptional inactivation. Cell 46:1043–1051.
  • Lin, B. T., S. Gruenwald, A. O. Morla, W.-H. Lee, and J. Y. J. Wang. 1991. Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J. 10:857–864.
  • Livingston, D. M., J. A. DeCaprio, and J. Ludlow. 1989. Does the product of the. RB1 locus have a cell-cycle regulatory function?, p. 141–144. In W. Cavenee, N. Hastie, and E. Stanbridge (ed.), Recessive oncogenes and tumor suppression, Current communications in molecular biology. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Ludlow, J. W., J. A. DeCaprio, C. M. Huang, W.-H. Lee, E. Paucha, and D. M. Livingston. 1989. SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56:57–65.
  • Ludlow, J. W., J. Shon, J. M. Pipas, D. M. Livingston, and J. A. DeCaprio. 1990. The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to release from SV40 large T. Cell 60:387–396.
  • Mihara, K., X.-R. Cao, A. Yen, S. Chandler, B. Driscoll, A. L. Murphree, A. T’Ang, and Y.-K. T. Fung. 1989. Cell cycledependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246:1300–1303.
  • Montell, C., G. Courtois, C. Eng, and A. Berk. 1984. Complete transformation by adenovirus 2 requires both E1A proteins. Cell 36:951–961.
  • Moran, E. 1988. A region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature (London) 334:168–170.
  • Moran, E., T. Grodzicker, R. J. Roberts, M. B. Mathews, and B. Zerler. 1986. Lytic and transforming functions of individual products of the adenovirus E1A gene. J. Virol. 57:765–775.
  • Moran, E., and M. B. Mathews. 1987. Multiple functional domains in the adenovirus E1A gene. Cell 48:177–178.
  • Moran, B., and B. Zerler. 1988. Interactions between cell growth-regulating domains in the products of the adenovirus E1A oncogene. Mol. Cell. Biol. 8:1756–1764.
  • Moran, E., B. Zerler, T. M. Harrison, and M. B. Mathews. 1986. Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Mol. Cell. Biol. 6:3470–3480.
  • Nevins, J. R. 1981. Mechanisms of activation of early viral transcription by the adenovirus E1A gene product. Cell 26:213–220.
  • Nurse, P. 1990. Universal control mechanism regulating onset of M-phase. Nature (London) 344:503–508.
  • Offringa, R., S. Gebel, H. van Dam, M. Timmers, A. Smits, R. Zwart, B. Stein, J. L. Bos, A. van der Eb, and P. Herrlich. 1990. A novel function of the transforming domain of Ela: repression of AP-1 activity. Cell 62:527–538.
  • Pagano, M., and G. Draetta. Unpublished data.
  • Phelps, W. C., C. L. Lee. K. Munger, and P. M. Howley. 1988. The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 53:539–547.
  • Pietenpol, J. A., R. W. Stein, E. Moran, P. Yaciuk, R. Schlegel, R. M. Lyons, M. R. Pittelkow, K. Munger, P. M. Howley, and H. L. Moses. 1990. TGFβ1 inhibition of cmyc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777–785.
  • Pines, J., and T. Hunter. 1990. Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature (London) 346:760–763.
  • Pines, J., and T. Hunter. 1990. p34cdc2: the S and M kinase? New Biol. 2:389–401.
  • Quinlan, M. P., and T. Grodzicker. 1987. Adenovirus E1A 12S protein induces DNA synthesis and proliferation in primary epithelial cells in both the presence and absence of serum. J. Virol. 61:673–682.
  • Raychaudhuri, P., S. Bagchi, S. H. Devoto, V. B. Kraus, E. Moran, and J. R. Nevins. 1991. Domains of the adenovirus E1A proteins required for oncogenic activity are also required for dissociation of cellular transcription factor complexes. Genes Dev. 5:1200–1211.
  • Riabowol, K., G. Draetta, L. Brizuela, D. Vandre, and D. Beach. 1989. The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57:393–401.
  • Robbins, P. D., J. M. Horowitz, and R. C. Mulligan. 1990. Negative regulation of human c-fos expression by the retinoblastoma gene product. Nature (London) 346:668–671.
  • Ruley, H. E. 1983. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature (London) 304:602–606.
  • Schneider, J. F., F. Fisher, C. R. Goding, and N. C. Jones. 1987. Mutational analysis of the adenovirus E1a gene: the role of transcriptional regulation in transformation. EMBO J. 6:2053–2060.
  • Smith, D. H., and E. B. Ziff. 1988. The amino-terminal region of the adenovirus serotype 5 E1A protein performs two separate functions when expressed in primary baby rat kidney cells. Mol. Cell. Biol. 8:3882–3890.
  • Stein, R. W., M. Corrigan, P. Yaciuk, J. Whelan, and E. Moran. 1990. Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J. Virol. 64:4421–4427.
  • Stephens, C., and E. Harlow. 1987. Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. EMBO J. 6:2027–2035.
  • Svensson, C., and G. Akusjarvi. 1984. Adenovirus 2 early region 1A stimulates expression of both viral and cellular genes. EMBO J. 3:789–794.
  • Taya, Y., H. Yasuda, M. Kamijo, K. Nakaya, Y. Nakamura, Y. Ohba, and S. Nishimura. 1989. In vitro phosphorylation of the tumor suppressor gene RB protein by mitosis-specific histone Hl kinase. Biochem. Biophys. Res. Commun. 164:580–586.
  • Ulfendahl, P. J., S. Linder, J.-P. Kreivi, K. Nordqvist, C. Svensson, H. Hultberg, and G. Akusjarvi. 1987. A novel adenovirus-2 E1A mRNA encoding a protein with transcription activation properties. EMBO J. 6:2037–2044.
  • Virtanen, A., and U. Pettersson. 1983. The molecular structure of the 9S mRNA from early region la of adenovirus serotype 2. J. Mol. Biol. 165:496–499.
  • Weinberg, R. A. 1990. The retinoblastoma gene and cell growth control. Trends Biochem. Sci. 15:199–202.
  • Whyte, P. K., K. Buchkovich, J. M. Horowitz, S. H, Friend, M. Raybuck, R. A. Weinberg, and E. Harlow. 1988. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature (London) 334:124–129.
  • Whyte, P., N. M. Williamson, and E. Harlow. 1989. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67–75.
  • Xu, H. J., S. X. Hu, T. Hashimoto, R. Takahashi, and W. F. Benedict. 1989. The retinoblastoma susceptibility gene product: a characteristic pattern in normal cells and abnormal expression in malignant cells. Oncogene 4:807–812.
  • Yaciuk, P., M. Carter, J. Pipas, and E. Moran. 1991. Simian virus 40 large T antigen expresses a biological activity complementary to the p300-associated transforming function of the adenovirus E1A gene products. Mol. Cell. Biol. 11:2116–2124.
  • Zerler, B., B. Moran, K. Maruyama, J. Moomaw, T. Grod- zicker, and H. E. Ruley. 1986. Adenovirus E1A coding sequences which enable ras and pmt oncogenes to transform cultured primary cells. Mol. Cell. Biol. 6:887–899.
  • Zerler, B., R. J. Roberts, M. B. Mathews, and E. Moran. 1987. Different functional domains of the adenovirus E1A gene are involved in regulation of host cell cycle products. Mol. Cell. Biol. 7:821–829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.