3
Views
7
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Structure of DRE, a Retrotransposable Element Which Integrates with Position Specificity Upstream of Dictyostelium discoideum tRNA Genes

, , , &
Pages 229-239 | Received 02 Aug 1991, Accepted 11 Oct 1991, Published online: 01 Apr 2023

References

  • Aksoy, S., S. Williams, S. Chang, and F. F. Richards. 1990. SLACS retrotransposon from Trypanosoma brucei gambiense is similar to mammalian LINEs. Nucleic Acids Res. 18:785–792.
  • Belcourt, M. F., and P. J. Farabaugh. 1990. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNA induced slippage on a 7 nucleotide minimal site. Cell 62:339–352.
  • Boeke, J. D., and V. G. Corces. 1989. Transcription and reverse transcription of retrotransposons. Annu. Rev. Microbiol. 43:403–434.
  • Brierley, I., P. Digard, and S. C. Inglis. 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547.
  • Burke, W. D., C. C. Calalang, and T. H. Eickbush. 1987. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol. Cell. Biol. 7:2221–2230.
  • Cappello, J., K. Handelsman, S. Cohen, and H. Lodish. 1985. Structure and regulated transcription of DIRS-1: an apparent retrotransposon of Dictyostelium discoideum. Cold Spring Harbor Symp. Quant. Biol. 50:759–767.
  • Cappello, J., K. Handelsmann, and H. F. Lodish. 1985. Sequence of Dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell 43:105–115.
  • Chalker, D. L., and S. B. Sandmeyer. 1990. Transfer RNA genes are genomic targets for de novo transposition of the yeast retrotransposon Ty3. Genetics 126:837–850.
  • Clare, J., and P. Farabaugh. 1985. Nucleotide sequence of a yeast Ty element: evidence for an usual mechanism of gene expression. Proc. Natl. Acad. Sci. USA 82:2829–2833.
  • Clark, D. J., V. W. Bilanchone, L. J. Hywood, S. L. Dildine, and S. B. Sandmeyer. 1988. A yeast sigma composite element, TY3, has properties of a retrotransposon. J. Biol. Chem. 263:1413–1423.
  • Day, A., M. Schirmer-Rahire, M. R. Kuchka, S. P. Mayfield, and J. D. Rochaix. 1988. A transposon with an unusual arrangement of long terminal repeats in the green alga Chlamydomonas reinhardtii. EMBO J. 7:1967–1972.
  • Dingermann, T., E. Amon-Böhm, W. Bertling, R. Marschalek, and K. Nerke. 1988. A family of non-allelic tRNAVal,(GUU) genes from the cellular slime mold Dictyostelium discoideum. Gene 73:373–384.
  • Dingermann, T., T. Brechner, R. Marschalek, E. Amon-Böhm, and D. L. Welker. 1989. tRNAGlu(GAA) genes from the cellular slime mold Dictyostelium discoideum. DNA 8:193–204.
  • Finnegan, D. J. 1989. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, p. 503–518. In D. E. Berg and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Freund, R., and M. Meselson. 1984. Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon. Proc. Natl. Acad. Sci. USA 81:4462–4464.
  • Geiduschek, E. P., and G. P. Tocchini-Valentini. 1988. Transcription by RNA polymerase III. Annu. Rev. Biochem. 57:873–914.
  • Grandbastien, M. A., A. Spielmann, and M. Caboche. 1989. Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature (London) 337:376–380.
  • Hansen, L. J., D. L. Chalker, and S. B. Sandmeyer. 1988. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol. Cell. Biol. 8:5245–5256.
  • Hatfield, D., and S. Oroszlan. 1990. To where, what and how of ribosomal frame-shifting in retroviral protein synthesis. Trends Biochem. Sci. 15:186–190.
  • Hutchison, C. A., III, S. C. Hardies, D. D. Loeb, W. R. Shehee, and M. H. Edgell. 1989. LINEs and related retrotransposons: long interspersed repeated sequences in the eucaryotic genome, p. 593–618. In D. E. Berg and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Ikenaga, H., and K. Saigo. 1982. Insertion of a movable genetic element, 297, into the TATA box for the H3 histone gene in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 79:4143–4147.
  • Inouye, S., S. Yuki, and K. Saigo. 1984. Sequence specific insertion of the Drosophila transposable genetic element 17.6. Nature (London) 310:332–333.
  • Inouye, S., S. Yuki, and K. Saigo. 1986. Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur. J. Biochem. 154:417–425.
  • Jacks, T., H. D. Madhani, F. R. Masiarz, and H. E. Varmus. 1988. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55:447–458.
  • Jacks, T., and H. E. Varmus. 1985. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230:1237–1242.
  • Kassavetis, G. A., B. R. Brown, L. H. Nguyen, and E. P. Geiduschek. 1990. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60:235–245.
  • Kassavetis, G. A., D. L. Riggs, R. Negri, L. H. Nguyen, and E. P. Geiduschek. 1989. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol. Cell. Biol. 9:2551–2566.
  • Kimmel, B. E., O. K. Ole-Moiyoi, and J. R. Young. 1987. Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs. Mol. Cell. Biol. 7:1465–1475.
  • Kuchino, Y., H. Beier, N. Akita, and S. Nishimura. 1987. Natural UAG suppressor glutamine tRNA is elevated in mouse cells infected with Moloney murine leukemia virus. Proc. Natl. Acad. Sci. USA 84:2668–2672.
  • Marschalek, R., G. Borschet, and T. Dingermann. 1990. Genomic organization of the transposable element Tdd-3 from Dictyostelium discoideum. Nucleic Acids Res. 18:5751–5757.
  • Marschalek, R., T. Brechner, E. Amon-Bohm, and T. Dingermann. 1989. Transfer RNA genes: landmarks for integration of mobile genetic elements in Dictyostelium discoideum. Science 244:1493–1496.
  • Marschalek, R., and T. Dingermann. Structure, organization and function of transfer RNA genes in the cellular slime mold Dictyostelium discoideum. In P. Greenaway (ed.), Advances in gene technology, in press. JAI Press Ltd., London.
  • Mellor, J., S. M. Fulton, M. J. Dobson, W. Wilson, S. M. Kingsman, and A. J. Kingsman. 1985. A retrovirus-like strategy for expression of a fusion protein encoded by the yeast transposon Tyl. Nature (London) 313:243–246.
  • Michel, F., and B. F. Lang. 1985. Mitochondrial call II introns encode proteins related to the reverse transcriptase of retroviruses. Nature (London) 316:641–643.
  • Mount, S. M., and G. M. Rubin. 1985. Complete nucleotide sequence of the Drosophila transposable element copia and retroviral proteins. Mol. Cell. Biol. 5:1630–1638.
  • Murphy, S., C. Di Liegro, and M. Melli. 1987. The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell 51:81–87.
  • Panganiban, A. T., and H. M. Temin. 1984. Circles with two LTRs are precursors to integrated retrovirus DNA. Cell 36:673–679.
  • Poole, S., and R. Firtel. 1984. Genomic instability and mobile genetic elements in regions surrounding two discoidin I genes of Dictyostelium discoideum. Mol. Cell. Biol. 4:671–680.
  • Rosen, E., A. Sivertsen, and R. A. Firtel. 1983. An unusual transposon encoding heat shock inducible and developmentally regulated transcripts in Dictyostelium. Cell 35:243–251.
  • Saigo, K., W. Kugimiya, Y. Matsuo, S. Inouye, K. Yoshioka, and S. Yuki. 1984. Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature (London) 312:659–661.
  • Sandmeyer, S. B. Personal communication.
  • Sandmeyer, S. B., V. W. Bilanchone, D. J. Clark, P. Morcos, G. F. Carle, and G. M. Brodeur. 1988. Sigma elements are position-specific for many different yeast tRNA genes. Nucleic Acids Res. 16:1499–1515.
  • Sandmeyer, S. B., L. J. Hansen, and D. L. Chalker. 1990. Integration specificity of retrotransposons and retroviruses. Annu. Rev. Genet. 24:491–518.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Tuite, M. F., P. Bossier, and I. T. Fitch. 1988. A highly conserved sequence in yeast heat shock gene promoters. Nucleic Acids Res. 16:11845.
  • Varmus, H., and P. Brown. 1989. Retroviruses, p. 53–108. In D. E. Berg and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Voytas, D. F., and F. M. Ausubel. 1988. A copia-like transposable element family in Arabidopsis thaliana. Nature (London) 336:242–244.
  • Warmington, J. R., R. B. Waring, C. S. Newlon, K. J. Indge, and S. G. Oliver. 1985. Nucleotide sequence characterization of Tyl-17, a class II transposon from yeast. Nucleic Acids Res. 13:6679–6693.
  • Watts, D. J., and J. M. Ashworth. 1970. Growth of myxamoebae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem. J. 119:171–174.
  • Welker, D. L., and K. L. Williams. 1982. A genetic map of Dictyostelium discoideum based on mitotic recombination. Genetics 109:691–710.
  • Xiong, Y., and T. H. Eickbush. 1988. The site-specific ribosomal DNA insertion element RIBm belongs to a class of non-long- terminal-repeat retrotransposons. Mol. Cell. Biol. 8:114–123.
  • Xiong, Y., and T. H. Eickbush. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9:3353–3362.
  • Yuki, S., S. Inouye, S. Ishimaru, and K. Saigo. 1986. Nucleotide sequence characterization of a Drosophila retrotransposon 412 element. Eur. J. Biochem. 158:403–410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.