3
Views
17
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Basic Region of Myogenin Cooperates with Two Transcription Activation Domains To Induce Muscle-Specific Transcription

, , , &
Pages 266-275 | Received 20 Aug 1991, Accepted 22 Oct 1991, Published online: 01 Apr 2023

References

  • Binetruy, B., T. Smeal, and M. Karin. 1991. Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature (London) 351:122–127.
  • Braun, T., E. Bober, B. Winter, N. Rosenthal, and H. H. Arnold. 1990. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 9:821–831.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and H. H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701–709.
  • Braun, T., B. Winter, E. Bober, and H. H. Arnold. 1990. Transcriptional activation domain of the muscle-specific gene- regulatory protein myf5. Nature (London) 346:663–665.
  • Brennan, T. J., T. Chakraborty, and E. N. Olson. 1991. Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis. Proc. Natl. Acad. Sci. USA 88:5675–5679.
  • Brennan, T. J., and E. N. Olson. 1990. Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization. Genes Dev. 4:582–595.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor which binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627–2640.
  • Chakraborty, T., T. J. Brennan, L. Li, D. Edmondson, and E. N. Olson. 1991. Inefficient homooligomerization contributes to the dependence of myogenin on E2A products for efficient DNA binding. Mol. Cell. Biol. 11:3633–3641.
  • Chakraborty, T., T. J. Brennan, and E. N. Olson. 1991. Differential trans-activation of muscle-specific enhancer by myogenic helix-loop-helix proteins is separable from DNA binding. J. Biol. Chem. 266:2878–2882.
  • Chakraborty, T., and E. N. Olson. 1991. Domains outside the DNA-binding domain impart target gene specificity to myogenin and MRF4. Mol. Cell. Biol. 11:6103–6108.
  • Cress, W. D., and S. J. Trienzenberg. 1991. Critical structural elements of the VP16 transcriptional activation domain. Science 251:87–90.
  • Davis, R. L., P. Cheng, A. B. Lassar, and H. Weintraub. 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60:733–746.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Edmondson, D. G., T. J. Brennan, and E. N. Olson. 1991. Mitogenic repression of myogenin autoregulation. J. Biol. Chem. 266:21343–21346.
  • Edmondson, D. G., and E. N. Olson. 1989. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3:628–640.
  • Gonzalez, G. A., and M. R. Montminy. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680.
  • Henthorn, P., M. Kiledjian, and T. Kadesch. 1990. Two distinct transcription factors that bind the immunoglobulin enhancer µE5/κE2 motif. Science 247:467–470.
  • Hochschild, A., N. Irwin, and M. Ptashne. 1983. Repressor structure and the mechanism of positive control. Cell 32:319–325.
  • Ingraham, H. A., S. E. Flynn, J. W. Voss, V. R. Albert, M. S. Kapiloff, L. Wilson, and M. G. Rosenfeld. 1990. The POU- specific domain of Pit-1 is essential for sequence-specific, high- affinity DNA binding and DNA-dependent Pit-l-Pit-1 interactions. Cell 61:1021–1033.
  • Jaynes, J. B., J. B. Johnson, J. M. Bushkin, C. L. Gartside, and S. D. Hauschka. 1988. The muscle creatine kinase gene is regulated by multiple elements, including a muscle-specific enhancer. Mol. Cell. Biol. 8:62–70.
  • Kim, K. S., and L. Guarente. 1989. Mutations that alter transcriptional activation but not DNA binding in the zinc finger of yeast activator HAP1. Nature (London) 342:200–203.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequencespecific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831.
  • Lassar, A. B., R. L. Davis, W. E. Wright, T. Kadesch, C. Murre, A. Voronova, D. Baltimore, and H. Weintraub. 1991. Functional activity of myogenic HLH proteins requires heterooligomerization with E12/E47-like proteins in vivo. Cell 66:305–315.
  • Lewin, B. 1990. Commitment and activation at Pol II promoters: a tail of protein-protein interactions. Cell 61:1161–1164.
  • Li, L., R. Heller-Harrison, M. Czech, and E. N. Olson. Unpublished results.
  • Lillie, J. W., and M. R. Green. 1989. Transcription activation by the adenovirus E1a protein. Nature (London) 338:39–44.
  • Lin, H., K. Yutzey, and S. F. Konieczny. 1991. Muscle-specific expression of the troponin I gene requires interactions between helix-loop-helix muscle regulatory factors and ubiquitous transcription factors. Mol. Cell. Biol. 11:267–280.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Ma, J., and M. Ptashne. 1987. A new class of yeast transcriptional activators. Cell 51:113–119.
  • Miner, J. H., and B. Wold. 1990. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. USA 87:1089–1093.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.
  • Olson, E. N. 1990. MyoD family: a paradigm for development? Genes Dev. 4:1454–1461.
  • Piette, J., J. Bessereau, M. Huchet, and J. P. Changeux. 1990. Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor a-subunit. Nature (London) 345:353–355.
  • Rhodes, S. J., and S. F. Konieczny. 1989. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3:2050–2061.
  • Sartorelli, V., K. A. Webster, and L. Kedes. 1990. Musclespecific expression of the cardiac α-actin gene requires MyoD1, CArG-box binding factor, and Sp1. Genes Dev. 4:1811–1822.
  • Schafer, B. W., B. T. Blakely, G. J. Darlington, and H. M. Blau. 1990. Effect of cell history on response to helix-loop-helix family of myogenic regulators. Nature (London) 344:454–458.
  • Schena, M., L. P. Freedman, and K. R. Yamamoto. 1989. Mutations in the glucocorticoid receptor zinc finger region that distinguish interdigitated DNA binding and transcriptional enhancement activities. Genes Dev. 3:1590–1601.
  • Schwarz, J. J., and E. N. Olson. Unpublished data.
  • Stern, S., M. Tanaka, and W. Herr. 1989. The Oct-1 homo- eodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature (London) 341:624–630.
  • Sternberg, E. A., G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896–2909.
  • Tan, S., and T. J. Richmond. 1990. DNA binding-induced conformational change of the yeast transcriptional activator PRTF. Cell 62:367–377.
  • Tapscott, S. J., R. L. Davis, M. J. Thayer, P. F. Cheng, H. Weintraub, and A. B. Lassar. 1988. MyoDl: a nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts. Science 242:405–411.
  • Tapscott, S. J., and H. Weintraub. 1991. MyoD and the regulation of myogenesis by helix-loop-helix proteins. J. Clin. Invest. 87:1133–1138.
  • Thayer, M. J., S. J. Tapscott, R. L. Davis, W. E. Wright, A. B. Lassar, and H. Weintraub. 1989. Positive autoregulation of the myogenic determination gene MyoD1. Cell 58:241–248.
  • Weintraub, H., R. Davis, D. Lockshon, and A. Lassar. 1990. MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proc. Natl. Acad. Sci. USA 87:5623–5627.
  • Weintraub, H., V. J. Dwarki, I. Verma, R. Davis, S. Hollenberg, L. Snider, A. Lassar, and S. J. Tapscott. 1991. Muscle-specific transcriptional activation by MyoD. Genes Dev. 5:1377–1386.
  • Weintraub, H., S. J. Tapscott, R. L. Davis, M. J. Thayer, M. A. Adam, A. B. Lassar, and A. D. Miller. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86:5434–5438.
  • Wentworth, B. M., M. Donoghue, J. C. Engert, E. B. Berglund, and N. Rosenthal. 1991. Paired MyoD binding sites regulate myosin light chain gene expression. Proc. Natl. Acad. Sci. USA 88:1242–1246.
  • Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD1. Cell 56:607–617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.