7
Views
2
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Two Conserved Essential Motifs of the Murine Immunoglobulin λ Enhancers Bind B-Cell-Specific Factors

&
Pages 309-320 | Received 25 Jun 1991, Accepted 21 Oct 1991, Published online: 01 Apr 2023

References

  • Alt, F. W., T. K. Blackwell, R. A. DePinho, M. G. Reth, and G. D. Yancopoulos. 1986. Regulation of genome rearrangement events during lymphocyte differentiation. Immunol. Rev. 89:530.
  • Atchison, M. L., V. Delmas, and R. P. Perry. 1990. A novel upstream element compensates for an ineffectual octamer motif in an immunoglobulin Vκ promoter. EMBO J. 9:3109–3117.
  • Atchison, M. L., and R. P. Perry. 1987. The role of the κenhancer and its binding factor NF-κB in the developmental regulation of κ gene transcription. Cell 48:121–128.
  • Beckmann, H., L.-K. Su, and T. Kadesch. 1990. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer µE3 motif. Genes Dev. 4:167–179.
  • Berg, J., M. McDowell, H.-M. Jack, and M. Wabl. 1990. Immunoglobulin λ gene rearrangement can precede κ gene rearrangement. Dev. Immunol. 1:53–57.
  • Blackwell, T. K., M. W. Moore, G. D. Yancopoulos, H. Suh, S. Lutzker, E. Seising, and F. W. Alt. 1986. Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature (London) 324:585–589.
  • Blackwell, T. K., and H. Weintraub. 1990. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250:1104–1110.
  • Blomberg, B. B., C. M. Rudin, and U. Storb. 1991. Identification and localization of an enhancer for the human λ light chain immunoglobulin gene complex. J. Immunol. 147:2354–2358.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Calame, K. 1989. Immunoglobulin gene transcription: molecular mechanisms. Trends Genet. 5:395–399.
  • Carson, S., and G. E. Wu. 1989. A linkage map of the mouse immunoglobulin λ light chain locus. Immunogenetics 29:173–179.
  • Cebra, J. J., J. E. Colberg, and S. Dray. 1966. Rabbit lymphoid cells differentiated with respect to α-, γ-, and µ-heavy polypeptide chains and to allotypic markers Aal and Aa2. J. Exp. Med. 123:547–557.
  • Church, G. M., A. Ephrussi, W. Gilbert, and S. Tonegawa. 1985. Cell type specific contacts to immunoglobulin enhancers in nuclei. Nature (London) 313:798–801.
  • Coleclough, C., R. P. Perry, K. Karjalainen, and M. Weigert. 1981. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature (London) 290:372–378.
  • Cook, G. P., and M. S. Neuberger. 1990. Lymphoid-specific transcriptional activation by components of the IgH enhancer: studies on the E2/E3 and octanucleotide elements. Nucleic Acids Res. 18:3565–3571.
  • Currie, R. A., and R. G. Roeder. 1989. Identification of an octamer-binding site in the mouse κ light-chain immunoglobulin enhancer. Mol. Cell. Biol. 9:4239–4247.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1488.
  • Doglio, L., and U. Storb. Unpublished data.
  • Durdik, J., M. W. Moore, and E. Selsing. 1984. Novel κ light-chain gene rearrangements in mouse λ light chain-producing B lymphocytes. Nature (London) 307:749–752.
  • Eccles, S., N. Sarner, M. Vidal, A. Cox, and F. Grosveld. 1990. Enhancer sequences located 3' of the mouse immunoglobulin λ locus specify high-level expression of an immunoglobulin λ gene in B cells of transgenic mice. New Biol. 2:801–811.
  • Eckert, R. L. 1987. Sequencing by the chemical method, p. 7.5.1–7.5.9. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology. Greene Publishing Associates/ Wiley-Interscience, New York.
  • Eisenbeis, C., C. M. Rudin, and U. Storb. Unpublished data.
  • Engler, P., P. Roth, J. Y. Kim, and U. Storb. 1991. Factors affecting the rearrangement efficiency of an Ig test gene. J. Immunol. 146:2826–2835.
  • Ephrussi, A., G. M. Church, S. Tonegawa, and W. Gilbert. 1985. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134–140.
  • Ferrier, P., B. Krippl, T. K. Blackwell, A. J. W. Furley, H. Suh, A. Winoto, W. D. Cook, L. Hood, F. Constantini, and F. W. Alt. 1990. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J. 9:117–125.
  • Fromental, C., M. Kanno, H. Nomiyama, and P. Chambon. 1988. Cooperativity and hierarchical levels of functional organization in the SV40 enhancer. Cell 54:943–953.
  • Gerster, T., P. Matthias, M. Thali, J. Jiricny, and W. Schaffner. 1987. Cell type-specificity elements of the immunoglobulin heavy chain gene enhancer. EMBO J. 6:1323–1330.
  • Gollahon, K. A., J. Hagman, R. L. Brinster, and U. Storb. 1988. Ig λ producing B cells do not show feedback inhibition of gene rearrangement. J. Immunol. 141:2771–2780.
  • Hagman, J., C. M. Rudin, D. Haasch, D. Chaplin, and U. Storb. 1990. A novel enhancer in the immunoglobulin λ locus is duplicated and functionally independent of NFκB. Genes Dev. 4:978–992.
  • Henthorn, P., M. Kiledjian, and T. Kadesch. 1990. Two distinct transcription factors that bind the immunoglobulin enhancer µE5/κE2 motif. Science 247:467–470.
  • Hieter, P. A., S. J. Korsmeyer, T. A. Waldman, and P. Leder. 1981. Human immunoglobulin κ light-chain genes are deleted or rearranged in λ-producing B cells. Nature (London) 290:368–372.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Kemler, I., E. Schriber, M. M. Muller, P. Matthias, and W. Schaffner. 1989. Octamer transcription factors bind to two different sequence motifs of the immunoglobulin heavy chain promoter. EMBO J. 8:2001–2008.
  • Landolfi, N. F., X. M. Yin, J. D. Capra, and P. W. Tucker. 1988. A conserved heptamer upstream of the IgH promoter region octamer can be the site of a coordinate protein-DNA interaction. Nucleic Acids Res. 24:5503–5514.
  • LeBowitz, R., G. Clerc, M. Brenowitz, and P. A. Sharp. 1989. The Oct-2 protein binds cooperatively to adjacent octamer sites. Genes Dev. 3:1625–1638.
  • Lefranc, G., and M. P. Lefranc. 1990. Regulation of the immunoglobulin gene transcription. Biochimie 72:7–17.
  • Lenardo, M., J. W. Pierce, and D. Baltimore. 1987. Proteinbinding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science 236:1573–1577.
  • Libermann, T. A., M. Lenardo, and D. Baltimore. 1990. Involvement of a second lymphoid-specific enhancer element in the regulation of immunoglobulin heavy-chain gene expression. Mol. Cell. Biol. 10:3155–3162.
  • Maxam, A., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Meyer, K. B., and M. S. Neuberger. 1989. The immunoglobulin κ locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region. EMBO J. 8:1959–1964.
  • Meyer, K. B., M. J. Sharpe, M. A. Surani, and M. S. Neuberger. 1990. The importance of the 3'-enhancer region in immunoglobulin κ gene expression. Nucleic Acids Res. 18:5609–5615.
  • Muller, B., and M. Reth. 1988. Ordered activation of the Igλ locus in Abelson B cell lines. J. Exp. Med. 168:2131–2137.
  • Muller-Immergluck, M. M., W. Schaffner, and P. Matthias. 1990. Transcription factor Oct-2 A contains functionally redundant activating domains and works selectively from a promoter but not from a remote enhancer position in non-lymphoid (HeLa) cells. EMBO J. 9:1625–1634.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.
  • Nelms, K., R. Hromas, and B. Van Ness. 1990. Identification of a second inducible DNA-protein interaction in the κ immunoglobulin enhancer. Nucleic Acids Res. 18:1037–1043.
  • Nelms, K., and B. Van Ness. 1990. Identification of an octamer- binding site in the human κ light-chain enhancer. Mol. Cell. Biol. 10:3843–3846.
  • Nelsen, B., T. Kadesch, and R. Sen. 1990. Complex regulation of the immunoglobulin µ heavy-chain gene enhancer: µB, a new determinant of enhancer function. Mol. Cell. Biol. 10:3145–3154.
  • Nielsen, D. A., J. Chou, A. J. MacKrell, M. J. Casadaban, and D. F. Steiner. 1983. Expression of a preproinsulin-β-galactosi- dase gene fusion in mammalian cells. Proc. Natl. Acad. Sci. USA 80:5198–5202.
  • Ondek, B., A. Shepard, and W. Herr. 1987. Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities. EMBO J. 6:1017–1025.
  • Pernis, B., G. Chiappino, A. S. Kelus, and P. G. H. Gell. 1965. Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J. Exp. Med. 122:853–875.
  • Persiani, D. M., J. Durdik, and E. Seising. 1987. Active λ and κ antibody gene rearrangement in Abelson murine leukemia virus- transformed pre-B cell lines. J. Exp. Med. 165:1655–1674.
  • Pettersson, M., and W. Schaffner. 1987. A purine-rich DNA sequence motif present in SV40 and lymphotropic papovavirus binds a lymphoid-specific factor and contributes to enhancer activity in lymphoid cells. Genes Dev. 1:962–972.
  • Pettersson, M., and W. Schaffner. 1990. Synergistic activation of transcription by multiple binding sites for NF-κB even in absence of co-operative factor binding to DNA. J. Mol. Biol. 214:373–380.
  • Pettersson, S., G. P. Cook, M. Bruggemann, G. T. Williams, and M. S. Neuberger. 1990. A second B cell-specific enhancer 3' of the immunoglobulin heavy chain locus. Nature (London) 344:165–168.
  • Pierce, J. W., M. Lenardo, and D. Baltimore. 1988. Oligonucleotide that binds nuclear factor NF-κB acts as a lymphoidspecific and inducible enhancer element. Proc. Natl. Acad. Sci. USA 85:1482–1486.
  • Poellinger, L., and R. G. Roeder. 1989. Octamer transcription factors 1 and 2 each bind to two different functional elements in the immunoglobulin heavy-chain promoter. Mol. Cell. Biol. 9:747–756.
  • Poellinger, L., B. K. Yoza, and R. G. Roeder. 1989. Functional cooperativity between protein molecules bound at two distinct sequence elements of the immunoglobulin heavy-chain promoter. Nature (London) 337:573–576.
  • Pongubala, J. M. R., and M. L. Atchison. 1991. Functional characterization of the developmentally controlled immunoglobulin κ 3' enhancer: regulation by Id, a repressor of helixloop-helix transcription factors. Mol. Cell. Biol. 11:1040–1047.
  • Prost, E., and D. D. Moore. 1986. CAT vectors for analysis of eukaryotic promoters and enhancers. Gene 45:107–111.
  • Rudin, C. M., and U. Storb.
  • Ruezinsky, D., H. Beckmann, and T. Kadesch. 1991. Modulation of the IgH enhancer's cell type specificity through a genetic switch. Genes Dev. 5:29–37.
  • Schatt, M. D., S. Rusconi, and W. Schaffner. 1990. A single DNA-binding transcription factor is sufficient for activation from a distant enhancer and/or from a promoter position. EMBO J. 9:481–487.
  • Sen, R., and D. Baltimore. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716.
  • Sen, R., and D. Baltimore. 1989. Factors regulating immunoglobulin-gene transcription, p. 327–342. In T. Honjo, F. W. Alt, and T. H. Rabbins (ed.), Immunoglobulin genes. Academic Press, San Diego.
  • Siminovitch, K. A., A. Bakhshi, P. Goldman, and S. J. Korsmeyer. 1985. A uniform deleting element mediates the loss of κ genes in human B cells. Nature (London) 316:260–262.
  • Singh, H., R. Sen, D. Baltimore, and P. A. Sharp. 1986. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature (London) 319:154–158.
  • Staudt, L. M., H. Singh, R. Sen, T. Wirth, P. A. Sharp, and D. Baltimore. 1986. A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature (London) 323:640–643.
  • Storb, U., D. Haasch, B. Arp, P. Sanchez, P.-A. Cazenave, and J. Miller. 1989. Physical linkage of mouse λ genes by pulsed field gel electrophoresis suggests that the rearrangement process favors proximate target sequences. Mol. Cell. Biol. 9:711–718.
  • Tabak, H. F., and R. A. Flavell. 1978. A method for the recovery of DNA from agarose gels. Nucleic Acids Res. 5:2321–2324.
  • Tanaka, M., U. Grossniklaus, W. Herr, and N. Hernandez. 1988. Activation of the U2 snRNA promoter by the octamer motif defines a new class of RNA polymerasell enhancer elements. Genes Dev. 2:1764–1778.
  • Veldman, G. M., S. Lupton, and R. Kamen. 1985. Polyomavirus enhancer contains multiple redundant sequence elements that activate both DNA replication and gene expression. Mol. Cell. Biol. 5:649–658.
  • Wang, J., M. Oketani, and T. Watanabe. 1991. Positive and negative regulation of immunoglobulin gene expression by a novel B-cell-specific enhancer element. Mol. Cell. Biol. 11:75–83.
  • Weinberger, J., D. Baltimore, and P. A. Sharp. 1986. Distinct factors bind to apparently homologous sequences in the immunoglobulin heavy chain enhancer. Nature (London) 322:846–848.
  • Westin, G., and W. Schaffner. 1988. A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 7:3763–3770.
  • Yancopoulos, G. D., and F. W. Alt. 1985. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40:271–281.
  • Yancopoulos, G. D., T. K. Blackwell, H. Suh, L. Hood, and F. W. Alt. 1986. Introduced T cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase. Cell 44:251–259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.