0
Views
9
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Characterization of the DNA Target Site for the Yeast ARGR Regulatory Complex, A Sequence Able to Mediate Repression or Induction by Arginine

, , , &
Pages 68-81 | Received 15 Jul 1991, Accepted 04 Oct 1991, Published online: 01 Apr 2023

References

  • Ammerer, G. 1990. Identification, purification and cloning of a polypeptide (PRTF/GRM) that binds to mating specific promoter elements in yeast. Genes Dev. 4:299–312.
  • Béechet, J., M. Grenson, and J. M. Wiame. 1970. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 12:31–39.
  • Beier, D. R., A. Sledziewski, and E. T. Young. 1985. Deletion analysis identifies a region, upstream of the ADH2 gene of Saccharomyces cerevisiae, which is required for ADR1-medi- ated derepression. Mol. Cell. Biol. 5:1743–1749.
  • Bender, A., and G. F. Sprague, Jr. 1987. Matal protein, a yeast transcription activator binds synergistically with a second protein to a set of cell-type-specific genes. Cell 50:681–691.
  • Bercy, J., E. Dubois, and F. Messenguy. 1987. Regulation of arginine metabolism in Saccharomyces cerevisiae: expression of the three ARGR regulatory genes and cellular localization of their products. Gene 55:277–285.
  • Boonchird, C., F. Messenguy, and E. Dubois. 1991. Characterization of the yeast ARG5,6 gene: determination of its nucleotide sequence, localization of the functional domains and analysis of the control region. Mol. Gen. Genet. 226:154–166.
  • Crabeel, M., R. Huygen, R. Cunin, and N. Glansdorff. 1983. The promoter region of the ARG3 gene in Saccharomyces cerevisiae: nucleotide sequence and regulation in an ARG3-lacZ gene fusion. EMBO J. 2:205–212.
  • Crabeel, M., R. Huygen, K. Verschueren, F. Messenguy, K. Tinel, R. Cunin, and N. Glansdorff. 1985. General amino acid control and specific arginine repression in Saccharomyces cerevisiae: a physical study of the bifunctional regulatory region of the ARG3 gene. Mol. Cell. Biol. 5:3139–3148.
  • Crabeel, M., R. Lavallé, and N. Glansdorff. 1990. Argininespecific repression in Saccharomyces cerevisiae: kinetic data on ARG1 and ARG3 mRNA transcription and stability support a transcriptional control mechanism. Mol. Cell. Biol. 10:1226–1233.
  • Crabeel, M., F. Messenguy, F. Lacroute, and N. Glansdorff. 1981. Cloning ARG3, the gene for ornithine carbamoyltransferase from Saccharomyces cerevisiae: expression in Escherichia coli requires secondary mutations; production of plasmid β-lactamase. Proc. Natl. Acad. Sci. USA 78:5026–5030.
  • Crabeel, M., S. Seneca, K. Devos, and N. Glansdorff. 1988. Arginine repression of the Saccharomyces cerevisiae ARG1 gene: comparison of the ARG1 and ARG3 control regions. Curr. Genet. 13:113–124.
  • Cunin, R., E. Dubois, G. Van Thienen, K. Tinel, A. Jacobs, and M. Crabeel. 1986. Positive and negative regulation of CAR1 expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 205:170–177.
  • Degols, G. 1987. Functional analysis of the regulatory region adjacent to the cargB gene of Saccharomyces cerevisiae. Nucleotide sequence, gene fusion experiment and cis-dominant regulatory mutation analysis. Eur. J. Biochem. 169:193–200.
  • De Rijcke, M., and M. Crabeel. Unpublished data.
  • Dubois, E., J. Bercy, F. Descamps, and F. Messenguy. 1987. Characterization of two new genes essential for vegetative growth in Saccharomyces cerevisiae: nucleotide sequence determination and chromosome mapping. Gene 55:265–275.
  • Dubois, E., J. Bercy, and F. Messenguy. 1987. Characterization of two genes, ARGRI and ARGRIII required for specific regulation of arginine metabolism in yeast. Mol. Gen. Genet. 207:142–148.
  • Dubois, E., D. Hiernaux, M. Grenson, and J. M. Wiame. 1978. Specific induction of catabolism and its relation to the repression of biosynthesis in arginine metabolism of Saccharomyces cerevisiae. J. Mol. Biol. 122:383–406.
  • Dubois, E., and F. Messenguy. 1985. Isolation and characterization of the yeast ARGRII gene involved in regulating both anabolism and catabolism of arginine. Mol. Gen. Genet. 198:283–289.
  • Dubois, E., and F. Messenguy. 1991. In vitro studies of the binding of the ARGR proteins to the ARG5,6 promoter. Mol. Cell. Biol. 11:2169–2179.
  • Dubois, E., C. Ruiz-Cruz, and F. Messenguy. 1991. Recent data about the regulatory proteins involved in the control of arginine metabolism in Saccharomyces cerevisiae. Abstr. Yeast Genet. Mol. Biol. Meet., 224a.
  • Evans, R. M., and S. M. Hollenberg. 1988. Zinc fingers: gilt by association. Cell 52:1–3.
  • Friden, P., and P. Schimmel. 1987. LEU3 of Saccharomyces cerevisiae encodes a factor for control of RNA levels of a groups of leucine-specific genes. Mol. Cell. Biol. 7:2708–2717.
  • Griggs, D., and M. Johnston. 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597–8601.
  • Guarente, L. 1984. Yeast promoters: positive and negative elements. Cell 36:799–800.
  • Guarente, L. 1987. Regulatory proteins in yeast. Annu. Rev. Genet. 21:425–452.
  • Guarente, L., and M. Ptashne. 1981. Fusion of E. coli lacZ to the cytochrome c gene of S. cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199–2203.
  • Halvorsen, Y., K. Nandabahan, and R. Dickson. 1991. Identification of base and backbone contacts used for DNA sequence recognition and high-affinity binding by LAC9, a transcription activator containing a C6 zinc finger. Mol. Cell. Biol. 11:1777–1784.
  • Hartshone, T. S., H. Blumberg, and E. Y. Young. 1986. Sequence homology of the yeast regulatory protein ADR1 with Xenopus transcription factor TFIIIA. Science 320:283–287.
  • Heimberg, H., A. Boyen, M. Crabeel, and N. Glansdorff. 1990. E. coli and S. cerevisiae acetylomithine aminotransferases: evolutionary relationships with ornithine aminotransferases. Gene 90:69–78.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jacobs, P., J. C. Jauniaux, and M. Grenson. 1980. A codominant regulatory mutation linked to the ARGB-ARGC gene cluster in Saccharomyces cerevisiae. J. Mol. Biol. 139:691–702.
  • Jarvis, E. E., K. L. Clark, and G. F. Sprague, Jr. 1989. The yeast transcription activator PRTF, a homolog of the mammalian serum response factor, is encoded by the MCM1 gene. Genes Dev. 3:936–945.
  • Jarvis, E. E., D. C. Hagen, and G. F. Sprague, Jr. 1988. Identification of a DNA segment that is necessary and sufficient for α-specific gene control in Saccharomyces cerevisiae: implications for regulation of α-specific and α-specific genes. Mol. Cell. Biol. 8:309–320.
  • Jauniaux, J. C., E. Dubois, S. Vissers, M. Crabeel, and J. M. Wiame. 1982. Molecular cloning, DNA structure, and RNA analysis of the arginase gene in Saccharomyces cerevisiae. A study of cis-dominant regulatory mutations. EMBO J. 9:1125–1131.
  • Johnston, M. 1987. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51:458–476.
  • Johnston, M., and J. Dover. 1987. Mutations that inactivate a yeast transcriptional regulatory protein cluster in an evolutionarily conserved DNA binding domain. Proc. Natl. Acad. Sci. USA 84:2401–2405.
  • Kadonaga, J. T., K. R. Carner, F. K. Masiarz, and R. Tjian. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51:1079–1090.
  • Kadonaga, J. T., K. A. Jones, and R. Tjian. 1986. Promoterspecific activation of RNA polymerase II transcription by Sp1. Trends Biochem. Sci. 11:20–23.
  • Kammerer, B., A. Guyonvarch, and J. C. Hubert. 1984. Yeast regulatory gene PPR1. Nucleotide sequence, restriction map and codon usage. J. Mol. Biol. 180:239–250.
  • Keleher, C., C. Goutte, and A. D. Johnson. 1988. The yeast cell-type-specific repressor α2 acts cooperatively with a noncell-type-specific protein. Cell 53:927–936.
  • Kovari, L., R. Sumrada, I. Kovari, and T. Cooper. 1990. Multiple positive and negative cis-acting elements mediate induced arginase (CAR1) gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:5087–5097.
  • Laughon, A., and R. F. Gesteland. 1984. Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol. Cell. Biol. 4:260–267.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Luche, R., R. Sumrada, and T. Cooper. 1990. A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene. Mol. Cell. Biol. 10:3884–3895.
  • Lue, N. F., A. R. Buchman, and R. D. Kornberg. 1989. Activation of yeast RNA polymerase II transcription by a thymidine- rich upstream element in vitro. Proc. Natl. Acad. Sci. USA 86:486–490.
  • Lue, N. F., and R. D. Kornberg. 1987. Accurate initiation at RNA polymerase II promoters in extracts from S. cerevisiae. Proc. Natl. Acad. Sci. USA 84:8839–8843.
  • Marczak, J. E., and M. C. Brandriss. 1989. Isolation of constitutive mutations affection the proline utilization pathway in Saccharomyces cerevisiae and molecular analysis of the PUT3 transcriptional activator. Mol. Cell. Biol. 9:4696–4705.
  • McConkey, G. A., and D. F. Bogenhagen. 1987. Transition mutations within the Xenopus borealis somatic 5S RNA gene can have independent effects on transcription and TFIIIA binding. Mol. Cell. Biol. 7:486–494.
  • Messenguy, F. 1976. Regulation of arginine biosynthesis in Saccharomyces cerevisiae: isolation of a cis-dominant constitutive mutant for ornithine carbamoyltransferase synthesis. J. Bacteriol. 128:49–55.
  • Messenguy, F., and E. Dubois. 1983. Participation of transcriptional and post-transcriptional regulatory mechanisms in the control of arginine metabolism in yeast. Mol. Gen. Genet. 189:148–156.
  • Messenguy, F., and E. Dubois. 1988. The yeast ARGRII regulatory protein has homology with various RNases and DNA binding proteins. Mol. Gen. Genet. 211:102–105.
  • Messenguy, F., E. Dubois, and C. Boonchird. 1991. Determination of the DNA-binding sequences of ARGR proteins to arginine anabolic and catabolic promoters. Mol. Cell. Biol. 11:2852–2863.
  • Messenguy, F., E. Dubois, and F. Descamps. 1986. Nucleotide sequence of the ARGRII regulatory gene and amino acid sequence homologies between ARGRI, PPRI and GAL4 regulatory proteins. Eur. J. Biochem. 157:77–81.
  • Miller, J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Miller, J., M. McLachlan, and A. Klug. 1985. Repetitive zinc- binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609–1614.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Nagai, K., Y. Nakaseko, K. Nasmyth, and D. Rhodes. 1988. Zinc-finger motifs expressed in E. coli and folded in vitro direct specific binding to DNA. Nature (London) 332:284–286.
  • Nakanaye, K., and F. Eckstein. 1986. Inhibition of restriction endonuclease Ncil cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 14:9679–9698.
  • Norman, C., M. Runswick, R. Pollock, and R. Treisman. 1988. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989–1003.
  • Passmore, S., G. T. Maine, R. Elble, C. Christ, and B. K. Tye. 1988. S. cerevisiae protein involved in plasmid maintenance is necessary for mating of Mata cells. J. Mol. Biol. 204:593–606.
  • Pellman, D., M. McLaughlin, and G. R. Fink. 1990. TATA- dependent and TATA-independent transcription at the HIS4 gene of yeast. Nature (London) 348:82–85.
  • Pfeifer, K., B. Arcangioli, and L. Guarente. 1987. Yeast HAP1 activation competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene. Cell 49:9–18.
  • Pfeifer, K., K. S. Kim, S. Kogan, and L. Guarente. 1989. Functional dissection and sequence of yeast HAP1 activator. Cell 56:291–301.
  • Pfeifer, K., T. Prezant, and L. Guarente. 1987. Yeast HAP1 activator binds to two upstream sites of different sequences. Cell 49:19–27.
  • Pieler, T. P., J. Hamm, and R. G. Roeder. 1987. The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell 48:91–100.
  • Pollock, R., and R. Treisman. 1990. A sensitive method for the determination of protein-DNA binding specificities. Nucleic Acids Res. 18:6197–6204.
  • Qiu, H. F., E. Dubois, P. Broen, and F. Messenguy. 1990. Functional analysis of ARGRI and ARGRIII regulatory proteins involved in the regulation of arginine metabolism in Saccharomyces cerevisiae. Mol. Gen. Genet. 222:192–200.
  • Qiu, H. F., E. Dubois, and F. Messenguy. 1991. Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways. Mol. Cell. Biol. 11:2169–2179.
  • Ramos, F., P. Thuriaux, J. M. Wiame, and J. Béchet. 1970. The participation of ornithine and citrulline in the regulation of arginine metabolism in Saccharomyces cerevisiae. Eur. J. Biochem. 12:40–47.
  • Roy, A., F. Exinger, and R. Losson. 1990. cis- and trans-acting regulatory elements of the yeast URA3 promoter. Mol. Cell. Biol. 10:5257–5270.
  • Sakai, D. D., S. Helms, J. Carlstedt-Duke, J. A. Gustaffson, F. M. Rottman, and K. R. Yamamoto. 1988. Hormone-mediated repression: a negative glucocorticoid response element from the bovine prolactin gene. Genes Dev. 2:1144–1154.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Seneca, S., and M. Crabeel. Unpublished data.
  • Siddiqui, A. H., and M. C. Brandriss. 1989. The Saccharomyces cerevisiae PUT3 activator protein associates with proline-specific upstream activator sequences. Mol. Cell. Biol. 9:4706–4712.
  • Stillman, D. J., A. T. Bankier, A. Seddon, E. G. Groenbout, and K. Nasmyth. 1988. Characterization of a transcription factor involved in mother cell specific transcription of the yeast HO gene. EMBO J. 7:485–494.
  • Struhl, K. 1989. Helix-tum-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. Trends Biochem. Sci. 14:137–140.
  • Sumrada, R., and T. Cooper. 1984. Nucleotide sequence of Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions. J. Bacteriol. 160:1078–1087.
  • Sumrada, R., and T. Cooper. 1985. Point mutation generates constitutive expression of an inducible eucaryotic gene. Proc. Natl. Acad. Sci. USA 82:643–647.
  • Sumrada, R., and T. Cooper. 1987. Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc. Natl. Acad. Sci. USA 84:3997–4001.
  • Thuriaux, P. 1969. Existence de gènes regulateurs couplant la répression de la biosynthèse et l'induction du catabolisme de l'arginine dans 5. cerevisiae. Ph.D. thesis. Université Libre de Bruxelles, Brussels, Belgium.
  • Thuriaux, P., F. Ramos, J. M. Wiame, M. Grenson, and J. Béchet. 1968. Sur l'existence de génes régulateurs affectant simultanément la synthèse des enzymes biosynthétiques et cataboliques de l'arginine chez Saccharomyces cerevisiae. Arch. Intern. Physiol. Biochim. 76:955–956.
  • Westin, G., and W. Schaffner. 1988. A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 7:3763–3770.
  • Wolcott, J. M., and C. Ross. 1966. Orotidine 5′-phosphate decarboxylase from higher plants. Biochim. Biophys. Acta 122:532–534.
  • Wray, L. V., M. M. Witte, R. C. Dickson, and M. I. Riley. 1987. Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyver- omyces lactis: structural and functional relationship to GAL4 of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1111–1121.
  • Zong, J., J. Ashraf, and E. B. Thompson. 1990. The promoter and first, untranslated exon of the human glucocorticoid receptor gene are GC rich but lack consensus glucocorticoid receptor element sites. Mol. Cell. Biol. 10:5580–5585.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.