6
Views
8
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Localization of the raplGAP Catalytic Domain and Sites of Phosphorylation by Mutational Analysis

, , , , , & show all
Pages 4634-4642 | Received 26 Jun 1992, Accepted 24 Jul 1992, Published online: 01 Apr 2023

REFERENCES

  • Ballester, R., D. Marchuk, M. Boguski, A. Saulino, R. Letcher, M. Wigler, and F. Collins. 1990. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63: 851–859.
  • Bokoch, G. M., L. A. Quilliam, B. P. Bohl, A. J. Jesaitis, and M. T. Quinn. 1991. Inhibition of rapla binding to cytochrome B558 of NADPH oxidase by phosphorylation of rapla. Science 254: 1794–1796.
  • Boyle, W. J., P. Van Der Geer, and T. Hunter. 1991. Phosphopeptide mapping and phosphoamino acid analysis by two dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201: 110–149.
  • Diekmann, D., S. Brill, M. D. Garrett, N. Totty, J. Hsuan, C. Monfries, C. Hall, L. Lim, and A. Hall. 1991. Bcr encodes a GTPase-activating protein for p21rac. Nature (London) 351: 400–402.
  • Freeh, M., J. John, V. Pizon, P. Chardin, A. Tavitian, R. Clark, F. McCormick, and A. Wittinghofer. 1990. Inhibition of GTPaseactivating protein stimulation of Ras-p21 GTPase by the Krev-1 gene product. Science 249: 169–171.
  • Grussenmyer, T., K. H. Scheidtmann, M. A. Hutchinson, and G. Walter. 1985. Complexes of polyoma virus medium T antigen and cellular proteins. Proc. Natl. Acad. Sci. USA 82: 7952–7954.
  • Hart, M. J., A. Eva, T. Evans, S. A. Aaronson, and R. A. Cerione. 1991. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature (London) 354: 311–314.
  • Hata, Y., A. Kikuchi, T. Sasaki, M. D. Schaber, J. B. Gibbs, and Y. Takai. 1990. Inhibition of the ras p21 GTPase-activating protein-stimulated GTPase activity of c-Ha-ras p21 by smg p21 having the same putative effector domain as ras p21s. J. Biol. Chem. 265: 7104–7107.
  • Imai, Y., S. Miyake, D. A. Hughes, and M. Yamamoto. 1991. Identification of a GTPase-activating protein homolog in Schiz- osaccharomyces pombe. Mol. Cell. Biol. 11: 3088–3094.
  • Kemp, B. E., and R. B. Pearson. 1990. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15: 342–346.
  • Kenelly, P. J., and E. G. Krebs. 1991. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266: 15555–15558.
  • Kikuchi, A., T. Sasaki, S. Araki, Y. Hata, and Y. Takai. 1989. Purification and characterization from bovine brain cytosol of two GTPase-activating proteins specific for smg p21, a GTP- binding protein having the same effector domain as c-ras p21s. J. Biol. Chem. 264: 9133–9136.
  • Kitayama, H., T. Matsuzaki, Y. Ikawa, and M. Noda. 1990. Genetic analysis of the Kirsten-ras-revertant 1 gene: potentiation of its tumor suppressor activity by specific point mutations. Proc. Natl. Acad. Sci. USA 87: 4284–4288.
  • Kitayama, H., Y. Sugimoto, T. Matsuzaki, Y. Ikawa, and M. Noda. 1989. A ras-related gene with transformation suppressor activity. Cell 56: 77–84.
  • Marshall, M. S., W. S. Hill, A. S. Ng, U. S. Vogel, M. D. Schaber, E. M. Scolnick, R. A. Dixon, I. S. Sigal, and J. B. Gibbs. 1989. A C-terminal domain of GAP is sufficient to stimulate ras p21 GTPase activity. EMBO J. 8: 1105–1110.
  • Marti, K. B., and E. G. Lapetina. 1992. Epinephrine suppresses raplGAP-activated GTPase activity in human platelets. Proc. Natl. Acad. Sci. USA 89: 2784–2788.
  • Martin, G. A., D. Viskochil, G. Bollag, P. C. McCabe, W. J. Crosier, H. Haubruck, L. Conroy, R. Clark, P. O’Connell, R. M. Cawthon, M. A. Innis, and F. McCormick. 1990. The GAP- related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63: 843–849.
  • Martin, G. A., A. Yatani, R. Clark, L. Conroy, P. Polakis, A. M. Brown, and F. McCormick. 1992. GAP domains responsible for ras p21-dependent inhibition of muscarinic atrial K+ channel currents. Science 255: 192–194.
  • Munemitsu, S., M. A. Innis, R. Clark, F. McCormick, A. Ullrich, and P. Polakis. 1990. Molecular cloning and expression of a G25K cDNA, the human homolog of the yeast cell cycle gene CDC42. Mol. Cell. Biol. 10: 5977–5982.
  • Nice, E. C., L. Fabri, A. Hammacher, J. Holden, J. R. Simpson, and A. W. Burgess. 1992. The purification of a rapl GTPase- activating protein from bovine brain cytosol. J. Biol. Chem. 267: 1546–1553.
  • Peter, M., J. Nakgawa, M. Doree, J. C. Labbe, and E. A. Nigg. 1990. In vitro disassembly of the nuclear lamina and M phasespecific phosphorylation of lamins by cdc2 kinase. Cell 61: 591–602.
  • Pizon, V., P. Chardin, I. Lerosey, B. Olofsson, and A. Tavitian. 1988. Human cDNAs rapl and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the ‘effector’ region. Oncogene 3: 201–204.
  • Polakis, P. G., B. Rubinfeld, T. Evans, and F. McCormick. 1991. Purification of plasma membrane-associated GTPase activating protein specific for rapl/Krev-1 from HL60 cells. Proc. Natl. Acad. Sci. USA 88: 239–243.
  • Polakis, P. G., B. Rubinfeld, and F. McCormick. 1992. Phosphorylation of raplGAP in vivo and by cAMP-dependent kinase and the cell cycle p34cdc2 kinase in vitro. J. Biol. Chem. 267: 10780–10785.
  • Quinn, M. T., C. A. Parkos, L. Walker, S. H. Orkin, M. C. Dinauer, and A. J. Jesaitis. 1989. Association of a Ras-related protein with cytochrome b of human neutrophils. Nature (London) 342: 198–200.
  • Ron, D., M. Zannini, M. Lewis, R. B. Wickner, L. T. Hunt, G. Graziani, S. R. Tronick, S. A. Aaronson, and A. Eva. 1991. A region of proto-dbl essential for its transforming activity shows sequence similarity to a yeast cell cycle gene, CDC24, and the human breakpoint cluster gene, bcr. New Biol. 3: 372–379.
  • Rubinfeld, B., S. Munemitsu, R. Clark, L. Conroy, K. Watt, W. J. Crosier, F. McCormick, and P. Polakis. 1991. Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell 65: 1033–1042.
  • Settleman, J., V. Narasimhan, L. C. Foster, and R. A. Weinberg. 1992. Molecular cloning of cDNAs encoding the GAP-associated protein pl90: implications for a signaling pathway from RAS to the nucleus. Cell 69: 539–549.
  • Tanaka, K., M. Nakafuku, T. Satoh, M. S. Marshall, J. B. Gibbs, K. Matsumoto, Y. Kaziro, and A. Toh-e. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60: 803–807.
  • Trahey, M., G. Wong, R. Halenbeck, B. Rubinfeld, G. A. Martin, M. Ladner, C. M. Long, W. J. Crosier, K. Watt, K. Koths, and F. McCormick. 1988. Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242: 1697–1700.
  • Vogel, U. S., R. A.F. Dixon, M. D. Schaber, R. E. Diehl, M. S. Marshall, E. M. Scolnick, I. S. Sigal, and J. B. Gibbs. 1988. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature (London) 335: 90–93.
  • Xu, G., B. Lin, K. Tanaka, D. Dunn, D. Wood, R. Gesteland, R. White, R. Weiss, and F. Tamanoi. 1990. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63: 835–841.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.