6
Views
3
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Sodium Butyrate Inhibits Myogenesis by Interfering with the Transcriptional Activation Function of MyoD and Myogenin

, &
Pages 5123-5130 | Received 21 Apr 1992, Accepted 07 Aug 1992, Published online: 31 Mar 2023

REFERENCES

  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helixloop-helix DNA binding proteins. Cell 61: 49–59.
  • Blau, H. M., and C. J. Epstein. 1979. Manipulation of myogenesis in vitro: reversible inhibition by DMSO. Cell 17: 95–108.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and H. H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoDl induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8: 3617–3625.
  • Brennan, T. J., D. G. Edmonson, L. Li, and E. N. Olson. 1991. Transforming growth factor beta represses the actions of myogenin through a mechanism independent of DNA binding. Proc. Natl. Acad. Sci. USA 88: 3822–3826.
  • Bresnick, E. H., S. John, D. S. Berard, P. LeFebvre, and G. L. Hager. 1990. Glucocorticoid receptor-dependent disruption of a specific nucleosome on the mouse mammary tumor virus promoter is prevented by sodium butyrate. Proc. Natl. Acad. Sci. USA 87: 3977–3981.
  • Candido, E. P. M., R. Reeves, and J. R. Davie. 1978. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14: 105–113.
  • Cousens, L. S., D. Gallwitz, and B. M. Alberts. 1979. Different accessibilities in chromatin to histone acetylase. J. Biol. Chem. 254: 1716–1723.
  • Davis, R. L., P.-F. Cheng, A. B. Lassar, and H. Weintraub. 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60: 733–746.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000.
  • Edmondson, D. G., and E. N. Olson. 1989. A gene with homology to the myc similarity region of MyoDl is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3: 628–640.
  • Eisen, H., S. Hasthorpe, R. Gjerset, S. Nasi, and F. Keppel. 1980. In G. B. Rossi (ed.), In vivo and in vitro erythropoiesis: the Friend system. Elsevier Science Publishing, Inc., New York.
  • Endo, T., and B. Nadal-Ginard. 1987. Three types of musclespecific gene expression in fusion-blocked rat skeletal muscle cells: translational control in EGTA-treated cells. Cell 49: 515–526.
  • Fiszman, M., Y. D. Montarras, W. Wright, and F. Gros. 1980. Expression of myogenic differentiation and myotube formation by chick embryo myoblasts in the presence of sodium butyrate. Exp. Cell Res. 126: 31–37.
  • Gorman, C. M., and B. H. Howard. 1983. Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 11: 7631–7647.
  • Hagopian, H. K., M. G. Riggs, L. A. Swartz, and V. M. Ingram. 1977. Effect of n-butyrate on DNA synthesis in chick fibroblasts and Hela cells. Cell 12: 855–860.
  • Henthorn, P., M. Kiledjian, and T. Kadesch. 1990. Two distinct transcription factors that bind the immunoglobulin enhancer muE5/kappaE2 motif. Science 247: 467–470.
  • Jaynes, J. B., J. S. Chamberlain, J. N. Buskin, J. E. Johnson, and S. D. Hauschka. 1986. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol. Cell. Biol. 6: 2855–2864.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequencespecific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58: 823–831.
  • Lassar, A. B., R. L. Davis, W. Wright, T. Kadesch, C. Murre, D. Baltimore, and H. Weintraub. 1991. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E2A gene products in vivo. Cell 66: 305–315.
  • Lassar, A. B., M. J. Thayer, R. W. Overall, and H. Weintraub. 1989. Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoDl. Cell 58: 659–667.
  • Leder, A., and P. Leder. 1975. Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells. Cell 5: 319–322.
  • Levine, R., J. Campisi, S.-Y. Wang, and L. J. Gudas. 1984. Butyrate inhibits retinoic acid-induced differentiation of F9 teratocarcinoma stem cells. Dev. Biol. 105: 443–450.
  • Lillie, J. W., and M. R. Green. 1989. Transcription activation by the adenovirus Ela protein. Nature (London) 338: 39–44.
  • Martin, K. J., J. W. Lillie, and M. R. Green. 1990. Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature (London) 346: 147–152.
  • McKnight, G. S., L. Hager, and R. D. Palmiter. 1980. Butyrate and related inhibitors of histone deacetylation block the induction of egg white genes by steroid hormones. Cell 22: 469–477.
  • Miner, J. H., and B. J. Wold. 1991. c-myc inhibition of MyoD and myogenin-initiated myogenic differentiation. Mol. Cell. Biol. 11: 2842–2851.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD and myc proteins. Cell 56: 777–783.
  • Murre, C., P. S. McCaw, H. Vassin, M. Caudy, L. Y. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537–544.
  • Olson, E. N. 1990. The MyoD family: a paradigm for development. Genes Dev. 4: 1454–1461.
  • Pieper, F. R., R. L. Slobbe, F. C.S. Ramaekers, H. T. Cuypers, and H. Bloemendal. 1987. Upstream regions of hamster desmin and vimentin genes regulate expression during in vitro myogenesis. EMBO J. 6: 3611–3618.
  • Prasad, K., and P. Sinha. 1976. Effect of sodium butyrate on mammalian cells in culture: a review. In Vitro 12: 125–132.
  • Reeves, R., and P. Cserjesi. 1979. Sodium butyrate induces new gene expression in Friend erythroleukemia cells. J. Biol. Chem. 254: 4283–4290.
  • Rhodes, S. J., and S. F. Konieczny. 1989. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3: 2050–2061.
  • Sadowski, M., and M. Ptashne. 1989. Vector for expressing Gal4 (1-147). Nucleic Acids Res. 17: 7539.
  • Scholer, H., A. K. Hatzopoulos, R. Balling, N. Suzuki, and P. Gruss. 1984. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J. 8: 2543–2550.
  • Sealy, L., and R. Chalkley. 1978. The effect of sodium butyrate on histone modification. Cell 14: 115–121.
  • Sternberg, E. A., G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8: 2896–2909.
  • Sterner, R., G. Vidali, and V. G. Allfray. 1979. Studies of acetylation and deacetylation in high mobility group proteins. J. Biol. Chem. 254: 11577–11583.
  • Sterner, R., G. Vidali, and V. G. Allfrey. 1981. Studies of acetylation and deacetylation in high mobility group proteins. J. Biol. Chem. 256: 8892–8895.
  • Su, H., T. J. Bos, F. S. Monteclaro, and P. K. Vogt. 1991. Jun inhibits myogenic differentiation. Oncogene 6 (10): 1759–1766.
  • Tapscott, S. J., R. L. Davis, M. J. Thayer, P.-F. Cheng, H. Weintraub, and A. B. Lassar. 1988. MyoDl: a nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts. Science 242: 405–411.
  • Thayer, M. J., S. J. Tapscott, R. L. Davis, W. E. Wright, A. B. Lassar, and H. Weintraub. 1989. Positive autoregulation of the myogenic determination gene MyoDl. Cell 58: 241–248.
  • Tichonicky, L., M. A. Santana-Calderon, N. Defer, E. M. Geisen, G. Buck, and J. Kruh. 1981. Selective inhibition by sodium butyrate of glucocorticoid-induced tyrosine aminotransferase synthesis in hepatoma tissue culture cells. Eur. J. Biochem. 120: 427–433.
  • Weintraub, H., R. L. Davis, D. Lockshon, and A. Lassar. 1990. MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proc. Natl. Acad. Sci. USA 87: 5623–5627.
  • Weintraub, H., R. L. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezra, T. K. Blackwell, D. Turner, R. Rupp, S. Hollenberg, Y. Zhuang, and A. Lassar. 1991. The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251: 761–766.
  • Weintraub, H., V. J. Dwarki, I. Verma, R. L. Davis, S. Hollenberg, L. Snider, A. Lassar, and S. J. Tapscott. 1991. Muscle specific transcriptional activation by MyoD. Genes Dev. 5: 1377–1386.
  • Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56: 607–617.
  • Yaffe, D., and O. Saxel. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature (London) 270: 725–727.
  • Yoshida, M., M. Kijima, M. Akita, and T. Beppu. 1990. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265: 17174–17179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.