8
Views
7
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Separate Information Required for Nuclear and Subnuclear Localization: Additional Complexity in Localizing an Enzyme Shared by Mitochondria and Nuclei

, , &
Pages 5652-5658 | Received 13 Jul 1992, Accepted 18 Sep 1992, Published online: 01 Apr 2023

REFERENCES

  • Adachi, Y., and M. Yanagida. 1989. Higher order chromosome structure is affected by cold-sensitive mutations in a Schizosaccharomyces pombe gene crm1+which encodes a 115-kD protein preferentially localized in the nucleus and at its periphery. J. Cell Biol. 108:1195–1207.
  • Aebi, M., G. Kirchner, J. Chen, U. Vijayraghavan, A. Jacobson, N. C. Martin, and J. Abelson. 1990. Isolation of a temperaturesensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 265:16216–16220.
  • Beauchamp, P. M., E. W. Horn, S. R. Gross. 1977. Proposed involvement of an internal promoter in regulation and synthesis of mitochondrial and cytoplasmic leucyl-tRNA synthetases of Neurospora. Proc. Natl. Acad. Sci. USA 74:1172–1176.
  • Beltzer, J. P., S. R. Morris, and G. B. Kohlhaw. 1988. Yeast LEU4 encodes mitochondrial and nonmitochondrial forms of a-isopropylmalate synthase. J. Biol. Chem. 263:368–374.
  • Botstein, D., S. C. Falco, S. E. Stewart, M. Breenan, S. Scherer, D. T. Stinchcomb, K. Stnihl, and R. W. Davis. 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Caplan, A. J., and M. G. Douglas. 1991. Characterization of YD JI: a yeast homologue of the bacterial DnaJ protein. J. Cell Biol. 114:609–621.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Chatton, B., P. Walter, J. P. Ebel, F. Lacroute, and F. Fasiolo. 1988. The yeast K4S7 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263:52–57.
  • Chelsky, D., R. Ralph, and G. Jonak. 1989. Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol. Cell. Biol. 9:2487–2492.
  • Chen, J. Y., P. B. M. Joyce, C. L. Wolfe, M. C. Steffen, and N. C. Martin. 1992. Cytoplasmic and mitochondrial tRNA nucleotidyltransferase activities are derived from the same gene in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 267:14879–14883.
  • Clark, M. W., and J. Abelson. 1987. The subnuclear localization of tRNA ligase in yeast. J. Cell Biol. 105:1515–1526.
  • Danpure, C. J., P. J. Cooper, P. J. Wise, and P. R. Jennings. 1989. An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J. Cell Biol. 108:1345–1352.
  • Damn, G., P. C. Bohn, and G. Schatz. 1982. Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermediate space of yeast mitochondria. J. Biol. Chem. 257:13028–13033.
  • Davis, L. I., and G. R. Fink. 1990. The NUP1 gene encodes an essential component of the yeast nuclear pore complex. Cell 61:965–978.
  • Deshaies, R. J., and R. Schekman. 1990. Structural and functional dissection of sec62p, a membrane-bound component of the yeast endoplasmic reticulum protein import machinery. Mol. Cell. Biol. 10:6024–6035.
  • Doonan, S., D. Barra, and F. Bossa. 1984. Structural and genetic relationships between cytosolic and mitochondrial isoenzymes. Int. J. Biochem. 16:1193–1199.
  • Ellis, S. R., A. K. Hopper, and N. C. Martin. 1987. Aminoterminal extension generated from an upstream AUG codon is not required for mitochondrial import of yeast N2,N2-dimethyl-guanosine-specific tRNA methyltransferase. Proc. Natl. Acad. Sci. USA 84:5172–5176.
  • Ellis, S. R., A. K. Hopper, and N. C. Martin. 1989. Aminoterminal extension generated from an upstream AUG codon increases the efficiency of mitochondrial import of yeast N2,N2- dimethylguanosine-specific tRNA methyltransferase. Mol. Cell. Biol. 9:1611–1620.
  • Ellis, S. R., M. J. Morales, J. Li, A. K. Hopper, and N. C. Martin. 1986. Isolation and characterization of the TRM1 locus, a gene essential for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae. J. Biol. Chem. 261:9703–9709.
  • Emr, S. D., R. Schekman, M. C. Flessel, and J. Thorner. 1983. An MFa 1-SUC2 (α-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc. Natl. Acad. Sci. USA 80:7080–7084.
  • Emr, S. D., A. Vassarotti, J. Garrett, B. L. Geller, M. Takeda, and M. G. Douglas. 1986. The amino terminus of the yeast Fl-ATPase β-subunit precursor functions as a mitochondrial import signal. J. Cell Biol. 102:523–533.
  • Etcheverry, T., D. Colby, and C. Guthrie. 1979. A precursor to a minor species of yeast tRNASer contains an intervening sequence. Cell 18:11–26.
  • Geisselsoder, J., F. Witney, and P. Yuckenberg. 1987. Efficient site-directed in vitro mutagenesis. BioTechniques 5:786–791.
  • Gillman, E. C., L. B. Slusher, N. C. Martin, and A. K. Hopper. 1991. MOD5 translation initiation sites determine N6-isopentenyl adenosine modification of mitochondrial and cytoplasmic tRNA. Mol. Cell. Biol. 11:2382–2390.
  • Hardwick, K. G., M. J. Lewis, J. Semenza, N. Dean, and H. R. B. Pelham. 1990. ERD1, a yeast gene required for the retention of luminal endoplasmic reticulum proteins, affects glycoprotein processing in the Golgi apparatus. EMBO J. 9:623–630.
  • Hopper, A. K., F. Banks, and V. Evangelidis. 1978. A yeast mutant which accumulates precursor tRNAs. Cell 14:211–219.
  • Hunter, L., N. C. Martin, and A. K. Hopper. Unpublished data.
  • Hurt, E. C., and A. P. G. M. van Loon. 1986. How proteins find mitochondria and intramitochondrial compartments. Trends Biochem. Sci. 11:204–207.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Kalderon, D., B. L. Roberts, W. D. Richardson, and A. E. Smith. 1984. A short amino acid sequence able to specify nuclear location. Cell 39:499–509.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Li, J., A. K. Hopper, and N. C. Martin. 1989. N2,N2-dimethyl- guanosine-specific tRNA methyltransferase contains both nuclear and mitochondrial targeting signals in Saccharomyces cerevisiae. J. Cell Biol. 109:1411–1419.
  • Martin, N. C., and A. K. Hopper. 1982. Isopentenylation of both cytoplasmic and mitochondrial tRNA is affected by a single nuclear mutation. J. Biol. Chem. 257:10562–10565.
  • Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101:20–78.
  • Natsoulis, G., and G. R. Fink. 1986. The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of 5. cerevisiae. Cell 46:235–243.
  • Nelson, M., and P. Silver. 1989. Context affects nuclear protein localization in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:384–389.
  • Oda, T., T. Funai, and A. Ichiyama. 1990. Generation from a single gene of two mRNAs that encode the mitochondrial and peroxisomal serine:pyruvate aminotransferase of rat liver. J. Biol. Chem. 265:7513–7519.
  • Peebles, C. L., P. Gegenhimer, and J. Abelson. 1983. Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell 32:525–536.
  • Perlman, D., and H. O. Halvorson. 1981. Distinct repressible mRNAs for cytoplasmic and secreted yeast invertase are encoded by a single gene. Cell 25:525–536.
  • Picard, D., and K. R. Yamamoto. 1987. Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J. 6:3333–3340.
  • Purdue, P. E., Y. Takada, and C. J. Danpure. 1990. Identification of mutations associated with peroxisome-to-mitochondrion mistargeting of alanine/glyoxylate aminotransferase in primary hyperoxaluria type 1. J. Cell Biol. 111:2341–2351.
  • Rauhut, R., P. R. Green, and J. Abelson. 1990. Yeast tRNA- splicing endonuclease is a heterotrimeric enzyme. J. Biol. Chem. 265:18180–18184.
  • Robbins, J., S. M. Dilworth, R. A. Laskey, and C. Dingwall. 1991. Two interdependent basic domains in the nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequences. Cell 64:615–623.
  • Rose, A. M. Unpublished data.
  • Sadler, I., A. Chiang, T. Kurihara, J. Rothblatt, J. Way, and P. Silver. 1989. A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J. Cell Biol. 109:2665–2675.
  • Suzuki, T., M. Sato, T. Yoshida, and S. Tuboi. 1989. Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single gene. J. Biol. Chem. 264:2581–2586.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Tzagoloff, A., and A. M. Myers. 1986. Genetics of mitochondrial biogenesis. Annu. Rev. Biochem. 55:249–285.
  • Worman, H. J., J. Yuan, G. Blobel, and S. D. Georgatos. 1988. A lamin B receptor in the nuclear envelope. Proc. Natl. Acad. Sci. USA 85:8531–8534.
  • Wu, M., and A. Tzagoloff. 1987. Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM1. J. Biol. Chem. 262:12275–12282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.