6
Views
32
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Point Mutations in the abl SH2 Domain Coordinately Impair Phosphotyrosine Binding In Vitro and Transforming Activity In Vivo

, , &
Pages 609-618 | Received 29 Jul 1991, Accepted 13 Nov 1991, Published online: 01 Apr 2023

REFERENCES

  • Anderson, D., C. A. Koch, L. Grey, C. Ellis, M. F. Moran, and T. Pawson. 1990. Binding of SH2 domains of phospholipase Cγ1, GAP, and src to activated growth factor receptors. Science 250:979–982.
  • Birge, R. B., J. E. Fajardo, B. J. Mayer, and H. Hanafusa. Submitted for publication.
  • Bryant, D., and J. T. Parsons. 1982. Site-directed mutagenesis of the src gene of Rous sarcoma virus: construction and characterization of a deletion mutant temperature sensitive for transformation. J. Virol. 44:683–691.
  • Calnan, B. J., B. Tidor, S. Biancalana, D. Hudson, and A. D. Frankel. 1991. Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171.
  • Cantley, L. C., K. R. Auger, C. Carpenter, B. Duckworth, A. Graziani, R. Kapeller, and S. Soltoff. 1991. Oncogenes and signal transduction. Cell 64:281–302.
  • Cross, F. R., E. A. Garber, D. Pellman, and H. Hanafusa. 1984. A short sequence in the p60src N terminus is required for p60src myristylation and membrane association and for cell transformation. Mol. Cell. Biol. 4:1834–1842.
  • Cross, F. R., and H. Hanafusa. 1983. Local mutagenesis of Rous sarcoma virus: the major sites of tyrosine and serine phosphorylation of p60src are dispensable for transformation. Cell 34:597–607.
  • DeClue, J. E., and G. S. Martin. 1989. Linker insertion-deletion mutagenesis of the v-src gene: isolation of host- and temperature-dependent mutants. J. Virol. 63:542–554.
  • DeClue, J. E., I. Sadowski, G. S. Martin, and T. Pawson. 1987. A conserved domain regulates interactions of the v-fps proteintyrosine kinase with the host cell. Proc. Natl. Acad. Sci. USA 84:9064–9068.
  • Ellis, C., M. Moran, F. McCormick, and T. Pawson. 1990. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature (London) 343:377–381.
  • Field, J., J.-I. Nikiwa, D. Broek, B. MacDonald, L. Rodgers, I. A. Wilson, R. A. Lerner, and M. Wigler. 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8:2159–2165.
  • Fukui, Y., and H. Hanafusa. 1991. Requirement of phosphati- dylinositol-3 kinase modification for its association with p60src. Mol. Cell. Biol. 11:1972–1979.
  • Fukui, Y., M. C. O'Brien, and H. Hanafusa. 1991. Deletions in the SH2 domain of p60v-src prevent association with the detergent-insoluble cellular matrix. Mol. Cell. Biol. 11:1207–1213.
  • Glenney, J. R., and L. Zokas. 1989. Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J. Cell Biol. 108:2401–2408.
  • Glenney, J. R., L. Zokas, and M. P. Kamps. 1988. Monoclonal antibodies to phosphotyrosine. J. Immunol. Methods 109:277–285.
  • Goldschmidt-Clermont, P. J., J. W. Kim, L. M. Machesky, S. G. Rhee, and T. D. Pollard. 1991. Regulation of phospholipase C-γ1 by profilin and tyrosine phosphorylation. Science 251:1231–1233.
  • Hanks, S. K., A. M. Quinn, and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52.
  • Hirai, H., and H. E. Varmus. 1990. Site-directed mutagenesis of the SH2- and SH3-coding domains of c-src produces varied phenotypes, including oncogenic activation of p60c-src. Mol. Cell. Biol. 10:1307–1318.
  • Hirai, H., and H. E. Varmus. 1990. Mutations in src homology regions 2 and 3 of activated chicken c-src that result in preferential transformation of mouse or chicken cells. Proc. Natl. Acad. Sci. USA 87:8592–8596.
  • Hirai, H., and H. E. Varmus. 1990. SH2 mutants of c-src that are host-dependent for transformation are trans-dominant inhibitors of mouse cell transformation by activated c-src. Genes Dev. 4:2342–2352.
  • Jackson, P. Unpublished data.
  • Jackson, P., and D. Baltimore. 1989. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. EMBO J. 8:449–456.
  • Jackson, P., M. Paskind, and D. Baltimore. Unpublished data.
  • Jackson, P., R. A. Van Etten, G. Q. Daley, and D. Baltimore. Submitted for publication.
  • Johnson, K. A., and J. C. Stone. 1990. Delineation of functional determinants in the transforming protein of Fujinami sarcoma virus. J. Virol. 643:3337–3349.
  • Kamps, M. P., J. E. Buss, and B. M. Sefton. 1985. Mutation of NH2-terminal glycine of p60src prevents both myristylation and morphological transformation. Proc. Natl. Acad. Sci. USA 82:4625–4628.
  • Kim, H. K., J. W. Kim, A. Zilberstein, B. Margolis, J. G. Kim, J. Schlessinger, and S. G. Rhee. 1991. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254. Cell 65:435–441.
  • Kitamura, N., and M. Yoshida. 1983. Small deletion in src of Rous sarcoma virus modifying transformation phenotypes: identification of 207-nucleotide deletion and its smaller product with protein kinase activity. J. Virol. 46:985–992.
  • Kmiecik, T. E., and D. Shalloway. 1987. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49:65–73.
  • Koch, C. A., D. Anderson, M. F. Moran, C. Ellis, and T. Pawson. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674.
  • Koch, C. A., M. F. Moran, I. Sadowski, and T. Pawson. 1989. The common src homology region 2 domain of cytoplasmic signaling proteins is a positive effector of v-fps tyrosine kinase function. Mol. Cell. Biol. 9:4131–4140.
  • Konopka, J. B., R. L. Davis, S. M. Watanabe, A. S. Ponticelli, L. Schiff-Maker, N. Rosenberg, and O. N. Witte. 1984. Only site-directed antibodies reactive with the highly conserved src- homologous region of the v-abl protein neutralize kinase activity. J. Virol. 51:223–232.
  • Margolis, B., N. Li, A. Koch, M. Mohammadi, D. R. Hurwitz, A. Zilberstein, A. Ullrich, T. Pawson, and J. Schlessinger. 1990. The tyrosine-phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-7. EMBO J. 9:4375–4380.
  • Matsuda, M., B. J. Mayer, Y. Fukui, and H. Hanafusa. 1990. Binding of transforming protein, P47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science 248:1537–1539.
  • Matsuda, M., B. J. Mayer, and H. Hanafusa. 1991. Identification of domains of the v-crk oncogene product sufficient for association with phosphotvrosine-containing proteins. Mol. Cell. Biol. 11:1607–1613.
  • Mayer, B. J., M. Hamaguchi, and H. Hanafusa. 1988. Characterization of p47gag-crk, a novel oncogene product with sequence similarity to a putative modulatory domain of protein-tyrosine kinases and phospholipase C. Cold Spring Harbor Symp. Quant. Biol. 53:907–914.
  • Mayer, B. J., and H. Hanafusa. 1990. Association of the v-crk oncogene product with phosphotyrosine-containing proteins and protein kinase activity. Proc. Natl. Acad. Sci. USA 87:2638–2642.
  • Mayer, B. J., and H. Hanafusa. 1990. Mutagenic analysis of the v-crk oncogene: requirement for SH2 and SH3 domains and correlation between increased cellular phosphotyrosine and transformation. J. Virol. 64:3581–3589.
  • Mayer, B. J., and P. K. Jackson. Unpublished data.
  • Mayer, B. J., P. K. Jackson, and D. Baltimore. 1991. The noncatalytic src homology region 2 segment of abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc. Natl. Acad. Sci. USA 88:627–631.
  • Moran, M. F., C. A. Koch, D. Anderson, C. Ellis, L. England, G. S. Martin, and T. Pawson. 1990. Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl. Acad. Sci. USA 87:8622–8626.
  • Moran, M. F., P. Polakis, F. McCormick, T. Pawson, and C. Ellis. 1991. Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Mol. Cell. Biol. 11:1804–1812.
  • Nishibe, S., M. I. Wahl, S. M. T. Hernandez-Sotomayor, N. K. Tonks, S. G. Rhee, and G. Carpenter. 1990. Increase in the catalytic activity of phospholipase C-γ1 by tyrosine phosphorylation. Science 250:1253–1256.
  • O'Brien, M. C., Y. Fukui, and H. Hanafusa. 1990. Activation of the proto-oncogene p60c-src by point mutations in the SH2 domain. Mol. Cell. Biol. 10:2855–2862.
  • Parsons, J. T., D. Bryant, V. Wilkerson, G. Gilmartin, and S. J. Parsons. 1984. Site-directed mutagenesis of Rous sarcoma virus pp60src: identification of functional domains required for transformation, p. 37–42. In G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson (ed.), Cancer cells 2. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Pawson, T. 1988. Non-catalytic domains of cytoplasmic proteintyrosine kinases: regulatory elements in signal transduction. Oncogene 3:491–495.
  • Pendergast, A. M., A. J. Muller, M. H. Havlik, Y. Maru, and O. N. Witte. 1991. BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 66:161–171.
  • Piwnica-Worms, H., K. B. Saunders, T. M. Roberts, A. E. Smith, and S. H. Cheng. 1987. Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c-src. Cell 49:75–82.
  • Reynolds, A. B., S. B. Kanner, H.-C. R. Wang, and J. T. Parsons. 1989. Stable association of activated pp60src with two tyrosine-phosphorylated cellular proteins. Mol. Cell. Biol. 9:3951–3958.
  • Rosenberg, N. E., and O. N. Witte. 1988. The viral and cellular forms of the Abelson (abl) oncogene. Adv. Virus Res. 54:39–81.
  • Sadowski, I., J. C. Stone, and T. Pawson. 1986. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fuji- nami sarcoma virus p130gag-fps Mol. Cell. Biol. 6:4396–4408.
  • Schiff-Maker, L., M. C. Burns, J. B. Konopka, S. Clark, O. N. Witte, and N. Rosenberg. 1986. Monoclonal antibodies specific for v-abl- and c-abl-encoded molecules. J. Virol. 57:1182–1186.
  • Scott, M. L., and D. Baltimore. Unpublished data.
  • Skolnick, E. Y., B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger. 1991. Cloning of P13 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90.
  • Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40.
  • Snyder, M. A., J. M. Bishop, W. W. Colby, and A. D. Levinson. 1983. Phosphorylation of tyrosine-416 is not required for the transforming properties and kinase activity of pp60v-src. Cell 32:891–901.
  • Trahey, M., G. Wong, R. Halenbeck, B. Rubinfeld, G. A. Martin, M. Ladner, C. M. Long, W. J. Crosier, K. Watt, K. Koths, and F. McCormick. 1988. Molecular cloning of two types of GAP cDNA from human placenta. Science 242:1697–1700.
  • Ullrich, A., and J. Schlessinger. 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212.
  • Verderame, M. F., J. M. Kaplan, and H. E. Varmus. 1989. A mutation in v-src that removes a single conserved residue in the SH-2 domain of pp60v-src restricts transformation in a hostdependent manner. J. Virol. 63:338–348.
  • Vogel, U. S., R. A. F. Dixon, M. D. Schaber, R. E. Diehl, M. S. Marshall, E. M. Scoinick, I. S. Sigal, and J. B. Gibbs. 1988. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature (London) 335:90–93.
  • Wang, H.-C., and J. T. Parsons. 1989. Deletions and insertions within an amino-terminal domain of pp60v-irc inactivate transformation and modulate membrane stability. J. Virol. 63:291–302.
  • Wüthrich, K. 1986. NMR of proteins and nucleic acids, p. 28–31. John Wiley & Sons, Inc., New York.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.