3
Views
14
CrossRef citations to date
0
Altmetric
Cell Growth and Development

RSR1, a ras-Like Gene Homologous to Krev-1 (smg21A/rap1A): Role in the Development of Cell Polarity and Interactions with the Ras Pathway in Saccharomyces cerevisiae

, , , , , & show all
Pages 758-766 | Received 07 Jul 1991, Accepted 30 Oct 1991, Published online: 01 Apr 2023

REFERENCES

  • Adams, A. E. M., D. I. Johnson, R. M. Longnecker, B. F. Sloat, and J. R. Pringle. 1990. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111:131–142.
  • Adari, H., D. R. Lowy, B. M. Willumsen, C. J. Der, and F. McCormick. 1988. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240:518–521.
  • Ballester, R., T. Michaeli, K. Ferguson, H.-P. Xu, F. McCormick, and M. Wigler. 1989. Genetic analysis of mammalian GAP expressed in yeast. Cell 59:681–686.
  • Barbacid, M. 1987. ras genes. Annu. Rev. Biochem. 56:779–828.
  • Bender, A. Unpublished data.
  • Bender, A., and J. R. Pringle. 1989. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl. Acad. Sci. USA 86:9976–9980.
  • Bender, A., and G. F. Sprague, Jr. 1989. Pheromones and pheromone receptors are the primary determinants of mating specificity in the yeast Saccharomyces cerevisiae. Genetics 121:463–476.
  • Botstein, D., S. C. Falco, S. E. Stewart, M. Brennan, S. Scherer, D. T. Stinchcomb, K. Struhl, and R. W. Davis. 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Bourne, H. R. 1988. Do GTPases direct membrane traffic in secretion? Cell 53:669–671.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cellular functions. Nature (London) 348:125–132.
  • Broach, J. R., J. N. Strathern, and J. B. Hicks. 1979. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8:121–133.
  • Broek, D., T. Toda, T. Michaeli, L. Levin, C. Birchmeier, M. Zoller, S. Powers, and M. Wigler. 1987. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799.
  • Calés, C., J. F. Hancock, C. J. Marshall, and A. Hall. 1988. The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature (London) 332:548–551.
  • Cannon, J. F., and K. Tatchell. 1987. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 7:2653–2663.
  • Chant, J., K. Corrado, J. R. Pringle, and I. Herskowitz. 1991. BUD5, encoding a putative GTP/GDP exchange factor, is necessary for bud-site selection and interacts with bud formation gene BEM1. Cell 65:1213–1224.
  • Chant, J., and I. Herskowitz. 1991. Genetic control of bud-site selection in yeast by a set of gene products that comprise a morphogenetic pathway. Cell 65:1203–1212.
  • Crechet, J.-B., P. Poullet, M.-Y. Mistou, A. Parmeggiani, J. Camonis, E. Boy-Marcotte, F. Damak, and M. Jacquet. 1990. Enhancement of the GDP-GTP exchange of RAS proteins by the carboxyl-terminal domain of SCD25. Science 248:866–868.
  • DeFeo-Jones, D., K. Tatchell, L. C. Robinson, I. S. Sigal, W. C. Vass, D. R. Lowy, and E. M. Scolnick. 1985. Mammalian and yeast ras gene products: biological function in their heterologous systems. Science 228:179–184.
  • Frech, M., J. John, V. Pizon, P. Chardin, A. Tavitian, R. Clark, F. McCormick, and A. Wittinghofer. 1990. Inhibition of GTPase activating protein stimulation of Ras-p21 GTPase by the Krev-1 gene product. Science 249:169–171.
  • Gibbs, J. B., and M. S. Marshall. 1989. The ras oncogene—an important regulatory element in lower eucaryotic organisms. Microbiol. Rev. 53:171–185.
  • Gibbs, J. B., M. D. Schaber, M. S. Marshall, E. M. Scolnick, and I. S. Sigal. 1987. Identification of guanine nucleotides bound to ras-encoded proteins in growing yeast cells. J. Biol. Chem. 262:10426–10429.
  • Hall, A. 1990. The cellular functions of small GTP-binding proteins. Science 249:635–640.
  • Hall, A. 1990. ras and GAP—who's controlling whom? Cell 61:921–923.
  • Hartwell, L. H., R. K. Mortimer, J. Culotti, and M. Culotti. 1973. Genetic control of the cell division cycle in yeast. V. Genetic analysis of cdc mutants. Genetics 74:267–286.
  • Hata, Y., A. Kikuchi, T. Sasaki, M. D. Schaber, J. B. Gibbs, and Y. Takai. 1990. Inhibition of the ras p21 GTPase-activating protein-stimulated GTPase activity of c-Ha-ras p21 by smg p21 having the same putative effector domain as ras p21s. J. Biol. Chem. 265:7104–7107.
  • Holland, J. P., and M. J. Holland. 1979. The primary structure of a glyceraldehyde-3-phosphate dehydrogenase gene from Saccharomyces cerevisiae. J. Biol. Chem. 254:9839–9845.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnson, D. L., and J. R. Pringle. 1990. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111:143–152.
  • Jones, S., M.-L. Vignais, and J. R. Broach. 1991. The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to Ras. Mol. Cell. Biol. 11:2641–2646.
  • Kataoka, T., D. Broek, and M. Wigler. 1985. DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43:493–505.
  • Kataoka, T., S. Powers, C. McGill, O. Fasano, J. Strathern, J. Broach, and M. Wigler. 1984. Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37:437–445.
  • Kawata, M., Y. Matsui, J. Kondo, T. Hishida, Y. Teranishi, and Y. Takai. 1988. A novel small molecular weight GTP-binding protein with the same putative effector domain as the ras proteins in bovine brain membranes. J. Biol. Chem. 263:18965–18971.
  • Kitayama, H., T. Matsuzaki, Y. Ikawa, and M. Noda. 1990. Genetic analysis of the Kirsten-ras-revertant 1 gene: potentiation of its tumor suppressor activity by specific point mutations. Proc. Natl. Acad. Sci. USA 87:4284–4288.
  • Kitayama, H., Y. Sugimoto, T. Matsuzaki, Y. Ikawa, and M. Noda. 1989. A ras-related gene with transformation suppressor activity. Cell 56:77–84.
  • Levitzki, A. 1990. GTP-GDP exchange proteins. Science 248:794.
  • Lillie, S. H., and J. R. Pringle. 1980. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J. Bacteriol. 143:1384–1394.
  • Madaule, P., R. Axel, and A. M. Myers. 1987. Characterization of two members of the rho family from the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 84:779–783.
  • Marshall, M. S., J. B. Gibbs, E. M. Scolnick, and I. S. Sigal. 1987. Regulatory function of the Saccharomyces cerevisiae RAS C terminus. Mol. Cell. Biol. 7:2309–2315.
  • McAlister, L., and M. J. Holland. 1985. Isolation and characterization of yeast strains carrying mutations in the glyceralde- hyde-3-phosphate dehydrogenase genes. J. Biol. Chem. 260:15013–15018.
  • McCormick, F. 1989. ras GTPase activating protein: signal transmitter and signal terminator. Cell 56:5–8.
  • Nakafuku, M., T. Obara, K. Kaibuchi, I. Miyajima, A. Miyajima, H. Ito, S. Nakamura, K.-I. Arai, K. Matsumoto, and Y. Kaziro. 1988. Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc. Natl. Acad. Sci. USA 85:1374–1378.
  • Nakayama, N., A. Miyajima, and K. Arai. 1985. Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J. 4:2643–2648.
  • Pizon, V., P. Chardin, I. Lerosey, B. Olofsson, and A. Tavitian. 1988. Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the 'effector' region. Oncogene 3:201–204.
  • Powers, S., T. Kataoka, O. Fasano, M. Goldfarb, J. Strathern, J. Broach, and M. Wigler. 1984. Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36:607–612.
  • Powers, S., K. O'Neill, and M. Wigler. 1989. Dominant yeast and mammalian RAS mutants that interfere with CDC25-depen- dent activation of wild-type RAS in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:390–395.
  • Pringle, J. R., R. A. Preston, A. E. M. Adams, T. Stearns, D. G. Drubin, B. K. Haarer, and E. W. Jones. 1989. Fluorescence microscopy methods for yeast. Methods Cell Biol. 31:357–435.
  • Robinson, L. C., J. B. Gibbs, M. S. Marshall, I. S. Sigal, and K. Tatchell. 1987. CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science 235:1218–1221.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulsen. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sigal, I. S., J. B. Gibbs, J. S. D'Alonzo, and E. M. Scolnick. 1986. Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21. Proc. Natl. Acad. Sci. USA 83:4725–4729.
  • Sigal, I. S., J. B. Gibbs, J. S. D'Alonzo, G. L. Temeles, B. S. Wolanski, S. H. Socher, and E. M. Scolnick. 1986. Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc. Natl. Acad. Sci. USA 83:952–956.
  • Sloat, B. F., A. Adams, and J. R. Pringle. 1981. Roles of the CDC24 gene product in cellular morphogenesis during the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 89:395–405.
  • Tanaka, K., B. K. Lin, D. R. Wood, and F. Tamanoi. 1991. IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein. Proc. Natl. Acad. Sci. USA 88:468–472.
  • Tanaka, K., K. Matsumoto, and A. Toh-e. 1988. Dual regulation of the expression of the polyubiquitin gene by cyclic AMP and heat shock in yeast. EMBO J. 7:495–502.
  • Tanaka, K., K. Matsumoto, and A. Toh-e. 1989. IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:757–768.
  • Tanaka, K., M. Nakafuku, T. Satoh, M. S. Marshall, J. B. Gibbs, K. Matsumoto, Y. Kaziro, and A. Toh-e. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase-activating protein. Cell 60:803–807.
  • Tanaka, K., M. Nakafuku, F. Tamanoi, Y. Kaziro, K. Matsumoto, and A. Tohe. 1990. IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol. Cell. Biol. 10:4303–4313.
  • Toda, T., S. Cameron, P. Sass, M. Zoller, and M. Wigler. 1987. Three different genes in S. cerevisiae encode the catalytic subunit of the cAMP-dependent protein kinase. Cell 50:277–287.
  • Toda, T., I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto, and M. Wigler. 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36.
  • Wigler, M. H. 1990. GAPs in understanding Ras. Nature (London) 346:696–697.
  • Xu, H.-P., Y. Wang, M. Riggs, L. Rodgers, and M. Wigler. 1990. Biological activity of the mammalian RAP genes in yeast. Cell Regul. 1:763–769.
  • Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.