1
Views
14
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Involvement of cDNA in Homologous Recombination between Ty Elements in Saccharomyces cerevisiae

, &
Pages 1613-1620 | Received 25 Nov 1991, Accepted 28 Jan 1992, Published online: 31 Mar 2023

REFERENCES

  • Ahmad, Μ., and H. Bussey. 1986. Yeast arginine permease: nucleotide sequence of the CAN1 gene. Curr. Genet. 10:587–592.
  • Boeke, J. D. 1989. Transposable elements in Saccharomyces cerevisiae, p. 335–374. In D. E. Berg and Μ. Μ. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Boeke, J. D., D. Eichinger, D. Castrillon, and G. R. Fink. 1988. The Saccharomyces cerevisiae genome contains functional and nonfunctional copies of transposon Tyl. Mol. Cell. Biol. 8:1432–1442.
  • Boeke, J. D., D. J. Garfinkel, C. A. Styles, and G. R. Fink. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500.
  • Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxilase activity in yeast. Mol. Gen. Genet. 197:345–346.
  • Boeke, J. D., H. Xu, and G. R. Fink. 1988. A general method for the chromosomal amplifications of genes in yeast. Science 239:280–282.
  • Chapman, K., A. S. Bystrom, and J. D. Boeke. Personal communication.
  • Curcio, Μ. J., and D. J. Garfinkel. 1991. Single-step selection for Tyl element transposition. Proc. Natl. Acad. Sci. USA 88:936–940.
  • Curcio, Μ. J., A. Hedge, J. D. Boeke, and D. J. Garfinkel. 1990. Ty RNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 220:213–221.
  • Derr, L. K., J. K. Strathern, and D. J. Garfinkel. 1991. RNA- mediated recombination in S. cerevisiae. Cell 67:355–364.
  • Edelman, G. Μ., and J. A. Gally. 1970. Arrangement and evolution of eukaryotic genes, p. 962–972. In F. O. Schmitt (ed.), The neurosciences, second study program. Rockefeller University Press, New York.
  • Esposito, Μ. S., and J. E. Waggstaff. 1981. Mechanisms of mitotic recombination, p. 341–370. In J. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Fink, G. R. 1987. Pseudogenes in yeast. Cell 49:5–6.
  • Fleig, U. N., R. D. Pridmore, and P. Philipsen. 1986. Construction of LYS2 cartridges for use in genetic manipulations of Saccharomyces cerevisiae. Gene 46:237–245.
  • Fogel, S., R. K. Mortimer, and K. Lusnak. 1981. Mechanisms of meiotic gene conversion, or "wanderings on a foreign strand," p. 289–339. In J. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Garfinkel, D. J., J. D. Boeke, and G. R. Fink. 1985. Ty element transposition: reverse transcriptase and virus-like particules. Cell 42:507–517.
  • Haber, J. E., W. Y. Leung, R. H. Borts, and Μ. Lichten. 1991. The frequency of meiotic recombination in yeast is independent of the number and position of homologous donor sequences: implications for chromosome pairing. Proc. Natl. Acad. Sci. USA 88:1120–1124.
  • Jinks-Robertson, S., and T. D. Petes. 1985. High frequency meiotic gene conversion between repeated genes on non-homologous chromosomes in yeast. Proc. Natl. Acad. Sci. USA 82:3350–3354.
  • Jinks-Robertson, S., and T. D. Petes. 1986. Chromosomal translocations generated by high frequency meiotic recombination between repeated yeast genes. Genetics 114:731–752.
  • Kupiec, Μ., and T. D. Petes. 1988. Allelic and ectopic recombination between Ty elements in yeast. Genetics 119:549–559.
  • Kupiec, Μ., and T. D. Petes. 1988. Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2942–2954.
  • Lea, D. E., and C. A. Coulson. 1948. The distribution of the number of mutants in bacterial populations. J. Genet. 49:264–284.
  • Lichten, Μ., R. H. Borts, and J. E. Haber. 1987. Meiotic gene conversion and crossing over between dispersed homologous sequences occur frequently in Saccharomyces cerevisiae. Genetics 115:233–246.
  • Liebman, S. W., and S. Picologlou. 1989. Recombination associated with yeast retrotransposons, p. 63–90. In Y. Koltin and Μ. Leibowitz (ed.), Viruses of fungi and lower eukaryotes. Marcel Dekker, Inc., New York.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mellor, J., Μ. H. Malim, K. Gull, Μ. F. Tuite, S. McCready, T. Dibbawayan, S. Μ. Kingsman, and A. J. Kingsman. 1985. Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature (London) 318:583–586.
  • Mikus, Μ. K., and T. D. Petes. 1982. Recombination between genes located in nonhomologous chromosomes in Saccharomyces cerevisiae. Genetics 101:369–404.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358.
  • Paquin, C. E., and V. Μ. Williamson. 1984. Temperature effects on the rate of Ty transposition. Science 226:53–55.
  • Paquin, C. E., and V. Μ. Williamson. 1986. Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15°C of Saccharomyces cerevisiae strains lacking ADH1. Mol. Cell. Biol. 6:70–79.
  • Potier, S., B. Winsor, and F. Lacroute. 1982. Genetic selection for reciprocal translocation at chosen chromosomal sites in Saccharomyces cerevisiae. Mol. Cell. Biol. 2:1025–1032.
  • Roeder, G. S., and G. R. Fink. 1983. Transposable elements in yeast, p. 299–326. In J. A. Shapiro (ed.), Mobile genetic elements. Academic Press, Inc., New York.
  • Rothstein, R., C. Helms, and N. Rosenberg. 1987. Concerted deletions and insertions are caused by mitotic recombination between delta sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1198–1207.
  • Rothstein, R. J. 1983. A one-step procedure for gene replacement. Methods Enzymol. 101:202–211.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sugawara, N., and J. W. Szostak. 1983. Recombination between sequences in nonhomologous positions. Proc. Natl. Acad. Sci. USA 80:5675–5679.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double strand break model for recombination. Cell 33:25–35.
  • Teem, J. L., and Μ. Rosbash. 1983. Expression of a β-galactosidase gene containing the ribosomal protein 51 intron is sensitive to the ms2 mutation of yeast. Proc. Natl. Acad. Sci. USA 80:4403–4407.
  • Vanin, E. F. 1985. Processed pseudogenes: characteristics and evolution. Annu. Rev. Genet. 19:253–272.
  • Winston, F., F. Chumley, and G. R. Fink. 1983. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 101:211–227.
  • Xu, H., and J. D. Boeke. 1990. Localization of sequences required in cis for yeast Ty1 element transposition near the long terminal repeats: analysis of mini-Ty1 elements. Mol. Cell. Biol. 10:2695–2702.
  • Youngren, S. D., J. D. Boeke, N. J. Sanders, and D. J. Garfinkel. 1988. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol. Cell. Biol. 8:1421–1431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.