5
Views
10
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Saccharomyces cerevisiae CDC25 Gene Product Binds Specifically to Catalytically Inactive Ras Proteins In Vivo

&
Pages 2091-2099 | Received 21 Nov 1991, Accepted 04 Feb 1992, Published online: 31 Mar 2023

REFERENCES

  • Becker, D. M., and L. Guarente. 1991. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 194:182–187.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature (London) 349:117–127.
  • Broach, J. R., and R. J. Deschenes. 1990. The function of RAS genes in Saccharomyces cerevisiae. Adv. Cancer Res. 54:79–139.
  • Broek, D., T. Toda, T. Michaeli, L. Levin, C. Birchmeier, M. Zoller, S. Powers, and M. Wigler. 1987. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799.
  • Brünger, A. T., M. V. Milburn, L. Tong, A. M. deVos, J. Jancarik, Z. Yamaizumi, S. Nishimura, E. Ohtsuka, and S.-H. Kim. 1990. Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRAS p21 catalytic domain. Proc. Natl. Acad. Sci. USA 87:4849–4853.
  • Butt, T. R., E. J. Sternberg, J. A. Gorman, P. Clark, D. Hamer, M. Rosenberg, and S. T. Crooke. 1984. Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proc. Natl. Acad. Sci. USA 81:3332–3336.
  • Buttler, G., and D. J. Thiele. 1991. ACE2, an activator of yeast metallothionein expression which is homologous to SW15. Mol. Cell. Biol. 11:476–485.
  • Camonis, J. H., and M. Jacquet. 1988. A new RAS mutation that suppresses the CDC25 gene requirement for growth of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2980–2983.
  • Cannon, J. F., and K. Tatchell. 1987. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 7:2653–2663.
  • Casey, G. P., W. Xiao, and G. H. Rank. 1988. A convenient dominant selection marker for gene transfer in industrial strains of Saccharomyces yeast: SMRI encoded resistance to the herbicide sulfometuron methyl. J. Inst. Brew. 94:93–97.
  • Cizewski-Culotta, V., T. Hsu, S. Hu, P. Furst, and D. Hamer. 1989. Copper and the ACE1 regulatory protein reversibly induce yeast metallothionein gene transcription in a mouse extract. Proc. Natl. Acad. Sci. USA 86:8377–8381.
  • Crëchet, J.-B., P. Poullet, J. Camonis, M. Jacquet, and A. Parmeggiani. 1990. Different kinetic properties of the two mutants, RAS2Ile152 and RAS2Val19, that suppress the CDC25 requirement in RAS/adenylate cyclase pathway in Saccharomyces cerevisiae. J. Biol. Chem. 265:1563–1568.
  • Crechet, J.-B., P. Poullet, M.-Y. Mistou, A. Parmeggiani, J. Camonis, E. Boy-Marcotte, F. Damak, and M. Jacquet. 1990. Enhancement of the GDP-GTP exchange of RAS proteins by the carboxy-terminal domain of SCD25. Science 248:866–868.
  • Damak, F., E. Boy-Marcotte, D. Le-Roscouet, R. Guilbaud, and M. Jacquet. 1991. SDC25, a CDC25-like gene which contains a RAS-activating domain and is a dispensable gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:202–212.
  • DeFeo-Jones, D., K. Tatchell, L. C. Robinson, I. Sigal, W. C. Vass, D. R. Lowy, and Ε. Μ. Scolnick. 1985. Mammalian and yeast ras gene products: biological function in their heterologous system. Science 228:179–184.
  • Engelberg, D., G. Simchen, and A. Levitzki. 1990. In vitro reconstitution of CDC25 regulated S. cerevisiae adenylyl cyclase and its kinetic properties. EMBO J. 9:641–651.
  • Fedor-Chaiken, M., R. J. Deschenes, and J. R. Broach. 1990. SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61:329–340.
  • Feig, L. Α., and G. M. Cooper. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8:3235–3243.
  • Feig, L. Α., B.-T. Pan, T. M. Roberis, and G. M. Cooper. 1986. Isolation of ras GTP-binding mutants using an in situ colony-binding assay. Proc. Natl. Acad. Sci. USA 83:4607–4611.
  • Field, J., A. Vojtek, R. Ballester, G. Bolger, J. Colicelli, K. Ferguson, J. Gerst, T. Kataoka, T. Michaeli, S. Powers, M. Riggs, L. Rodgers, I. Wieland, B. Wheland, and M. Wigler. 1990. Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Cell 61:319–327.
  • Field, J., H.-P. Xu, T. Michaeli, R. Ballester, P. Sass, M. Wigler, and J. Colicelli. 1990. Mutations of the adenylate cyclase gene that block RAS function in Saccharomyces cerevisiae. Science 247:464–467.
  • Fields, S., and O.-K. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature (London) 340:245–246.
  • Fogel, S., and J. W. Welch. 1982. Tandem gene amplification mediates copper resistance in yeast. Proc. Natl. Acad. Sci. USA 79:5342–5346.
  • Fürst, P., S. Hu, R. Hackett, and D. Hamer. 1988. Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55:705–717.
  • Gerst, J. E., K. Ferguson, A. Vojtek, M. Wigler, and J. Field. 1991. CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex. Mol. Cell. Biol. 11:1248–1257.
  • Gibbs, J. B., and M. S. Marshall. 1989. The ras oncogene—an important regulatory element in lower eucaryotic organisms. Microbiol. Rev. 53:171–185.
  • Gibbs, J. B., M. D. Schaber, M. S. Marshall, Ε. Μ. Scolnick, and I. S. Sigal. 1987. Identification of guanine nucleotides bound to ras-encoded proteins in growing yeast cells. J. Biol. Chem. 262:10426–10429.
  • Goody, R. S., M. Frech, and A. Wittinghofer. 1991. Affinity of guanine nucleotide binding proteins for their ligands: facts and artefacts. Trends Biochem. Sci. 16:327–328. (Letter.)
  • Hamer, D. 1986. Metallothionein. Annu. Rev. Biochem. 55:913–951.
  • Herskowitz, I. 1987. Functional inactivation of genes by dominant negative mutations. Nature (London) 329:219–222.
  • Johnsson, N., G. Marriott, and K. Weber. 1988. p36, the major cytoplasmic substrate of sre tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J. 7:2435–2442.
  • Jones, S., M.-L. Vignais, and J. R. Broach. 1991. The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to Ras. Mol. Cell. Biol. 11:2641–2646.
  • Kataoka, T., S. Powers, S. Cameron, O. Fasano, M. Goldfarb, J. Broach, and M. Wigler. 1985. Functional homology of mammalian and yeast RAS protein. Cell 40:19–26.
  • Krengel, U., I. Schlichting, A. Scherer, R. Schumann, M. Frech, J. John, W. Kabsch, E. F. Pai, and A. Wittinghofer. 1990. Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62:539–548.
  • Kunisawa, R., T. N. Davis, M. S. Urdea, and J. Thorner. 1987. Complete nucleotide sequence of the gene encoding the regulatory subunit of 3′,5′-cyclic AMP-dependent protein kinase from the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 15:368–369.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Marshall, M. S., J. B. Gibbs, E. M. Scolnick, and I. S. Sigal. 1987. Regulatory function of the Saccharomyces cerevisiae RAS C terminus. Mol. Cell. Biol. 7:2309–2315.
  • Meyhack, B., A. Hinnen, and J. Heim. 1989. Heterologous gene expression in Saccharomyces cerevisiae, p. 311–321. In C. L. Hershberger, S. W. Queener, and G. Hegeman (ed.), Genetics and molecular biology of industrial microorganisms. American Society for Microbiology, Washington, D.C.
  • Michaeli, T., J. Field, R. Ballester, K. O’Neill, and M. Wigler. 1989. Mutants of H-ras that interfere with RAS effector function in Saccharomyces cerevisiae. EMBO J. 8:3039–3044.
  • Milburn, M. V., L. Tong, A. M. deVos, A. Brünger, Z. Yamaizumi, S. Nishimura, and S.-H. Kim. 1990. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945.
  • Mitts, M. R., J. Bradshaw-Rouse, and W. Heideman. 1991. Interactions between adenylate cyclase and the yeast GTPase-activating protein IRAL Mol. Cell. Biol. 11:4591–4598.
  • Munder, T., and H. Kuntzel. 1989. Glucose-induced cAMP signaling in Saccharomyces cerevisiae is mediated by the CDC25 protein. FEBS Lett. 242:341–345.
  • Munder, Τ., Μ. Mink, and H. Küntzel. 1988. Domains of the Saccharomyces cerevisiae CDC25 gene controlling mitosis and meiosis. Mol. Gen. Genet. 214:271–277.
  • Pai, E. F., U. Krengel, G. A. Petsko, R. S. Goody, W. Kabsch, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9:2351–2359.
  • Powers, S., K. O’Neill, and M. Wigler. 1989. Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:390–395.
  • Pringle, J. R., and L. H. Hartwell. 1981. The Saccharomyces cerevisiae cell cycle, p. 97–142. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Robinson, L. C., J. B. Gibbs, M. S. Marshall, I. S. Sigal, and K. Tatchell. 1987. CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science 235:1218–1221.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Rymond, B. C., R. S. Zitomer, D. Schiimperli, and M. Rosenberg. 1983. The expression in yeast of the Escherichia coli gal Κ gene on CYC1.gal Κ fusion plasmids. Gene 25:249–262.
  • Sanger, F., S. Nicklen, and A. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Sigal, I. S., J. B. Gibbs, J. S. D’Alonzo, G. L. Temeles, B. S. Wolanski, S. H. Socher, and Ε. Μ. Scolnick. 1986. Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc. Natl. Acad. Sci. USA 83:952–956.
  • Stacey, D. W., L. A. Feig, and J. B. Gibbs. 1991. Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras. Mol. Cell. Biol. 11:4053–4064.
  • Tanaka, K., B. K. Lin, D. R. Wood, and F. Tamanoi. 1991. IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein. Proc. Natl. Acad. Sci. USA 88:468–472.
  • Tanaka, Κ., Κ. Matsumoto, and A. Toh-e. 1989. IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:757–768.
  • Tanaka, K., M. Nakafuku, T. Satoh, M. S. Marshall, J. B. Gibbs, K. Matsumoto, Y. Kaziro, and A. Toh-e. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60:803–807.
  • Tanaka, K., M. Nakafuku, F. Tamanoi, Y. Kaziro, K. Matsumoto, and A. Toh-e. 1990. IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol. Cell. Biol. 10:4303–4313.
  • Taylor, S. S., J. A. Buechler, and W. Yonemoto. 1990. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu. Rev. Biochem. 59:971–1005.
  • Thevelein, J. M. 1991. Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol. Microbiol. 5:1301–1307.
  • Thiele, D. J. 1988. ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol. Cell. Biol. 8:2745–2752.
  • Toda, T., S. Cameron, P. Sass, M. Zoller, J. D. Scott, B. McMullen, M. Hurwitz, E. G. Krebs, and M. Wigler. 1987. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1371–1377.
  • Welch, J., S. Fogel, C. Buchman, and M. Karin. 1989. The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein. EMBO J. 8:255–260.
  • Wigler, M., J. Field, S. Powers, D. Broek, T. Toda, S. Cameron, J. Nikawa, T. Michaeli, J. Colicelli, and K. Ferguson. 1988. Studies of RAS function in the yeast Saccharomyces cerevisiae. Cold Spring Harbor Symp. Quant. Biol. 53:649–655.
  • Yang, W., W. Gahl, and D. Hamer. 1991. Role of heat shock transcription factor in yeast metallothionein gene expression. Mol. Cell. Biol. 11:3676–3681.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.