4
Views
12
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Characterization of the DNA-Binding Activity of GCR1: In Vivo Evidence for Two GCR1-Binding Sites in the Upstream Activating Sequence of TPI of Saccharomyces cerevisiae

, , , , , & show all
Pages 2690-2700 | Received 08 Jan 1992, Accepted 20 Mar 1992, Published online: 31 Mar 2023

References

  • Alber, Τ., and G. Kawasaki. 1982. Nucleotide sequence of the triose phosphate isomerase gene of Saccharomyces cerevisiae. J. Mol. Appl. Genetics 1:419–434.
  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Ausubel, F. Μ., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1989. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York.
  • Baker, H. V. 1986. Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutations, and evidence for expression. Mol. Cell. Biol. 6:3774–3784.
  • Baker, H. V. 1991. GCR1 of Saccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in the CTTCC sequence motif. Proc. Natl. Acad. Sci. USA 88:9443–9447.
  • Becker, P. B., and G. Schutz. 1988. Genomic footprinting. Genet. Eng. 10:1–19.
  • Bennetzen, J., and B. D. Hall. 1982. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase 1. J. Biol. Chem. 257:3018–3025.
  • Bitter, G. Α., Κ. Κ. Η. Chang, and Κ. Μ. Egan. 1991. A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. Mol. Gen. Genet. 231:22–32.
  • Bitter, G. Α., and K. Egan. 1984. Expression of heterologous genes in Saccharomyces cerevisiae from vectors utilizing the glyceraldehyde-3-phosphate dehydrogenase gene promoter. Gene 32:263–274.
  • Brandl, C. J., and K. Struhl. 1990. A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol. Cell. Biol. 10:4256–5265.
  • Brindle, P. K., J. P. Holland, C. E. Willett, M. A. Innis, and M. J. Holland. 1990. Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2: ABF1 protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription. Mol. Cell. Biol. 10:4872–4895.
  • Buchman, Α., W. J. Kimmerley, J. Rine, and R. D. Kornberg. 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:210–225.
  • Buchman, A. R., N. F. Lue, and R. D. Kornberg. 1988. Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein. Mol. Cell. Biol. 8:5086–5099.
  • Burke, R. L., P. Tekamp-Olson, and R. Najarian. 1983. The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. J. Biol. Chem. 258:2193–2201.
  • Butler, G., I. W. Dawes, and D. J. McConnell. 1990. TUF factor binds to the upstream region of the pyruvate decarboxylase structural gene (PDC1) of Saccharomyces cerevisiae. Mol. Gen. Genet. 223:449–456.
  • Capieux, Ε., Μ. L. Vignais, A. Sentenac, and A. Goffeau. 1989. The yeast H+-ATPase gene is controlled by the promoter binding factor TUF. J. Biol. Chem. 264:7437–7446.
  • Chambers, Α., C. Stanway, A. J. Kingsman, and S. M. Kingsman. 1988. The UAS of the yeast PGK gene is composed of multiple functional elements. Nucleic Acids Res. 16:8245–8260.
  • Chambers, Α., C. Stanway, J. S. H. Tsang, Y. Henry, A. J. Kingsman, and S. M. Kingsman. 1990. ARS binding factor 1 binds adjacent to RAP1 at the UASs of the yeast glycolytic genes PGK and PYK. Nucleic Acids Res. 18:5393–5399.
  • Chambers, Α., J. S. H. Tsang, C. Stanway, A. J. Kingsman, and S. M. Kingsman. 1989. Transcriptional control of the Saccharomyces cerevisiae PGK gene by RAP1. Mol. Cell. Biol. 9:5516–5524.
  • Chasman, D. I., N. F. Lue, A. R. Buchman, J. W. LaPointe, Y. Lorch, and R. D. Kornberg. 1990. A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator. Genes Dev. 4:503–514.
  • Church, G. M., and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991–1995.
  • Clifton, D., and D. G. Fraenkel. 1981. The gcr1 (glycolysis regulation) mutation of Saccharomyces cerevisiae. J. Biol. Chem. 256:13074–13078.
  • Clifton, D., S. B. Weinstock, and D. G. Fraenkel. 1978. Glycolysis mutants of Saccharomyces cerevisiae. Genetics 88:1–11.
  • Cohen, R., J. P. Holland, T. Yokoi, and M. J. Holland. 1986. Identification of a regulatory region that mediates glucose-dependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol. Cell. Biol. 6:2287–2297.
  • Cohen, R., T. Yokoi, J. P. Holland, A. E. Pepper, and M. J. Holland. 1987. Transcription of the constitutively expressed yeast enolase gene ENO1 is mediated by positive and negative cis-acting regulatory sequences. Mol. Cell. Biol. 7:2753–2761.
  • Cottrelle, P., D. Thiele, V. L. Price, S. Memet, J. Y. Mieguin, C. Marck, J.-M. Buhler, A. Sentenac, and P. Fromageot. 1985. Cloning, nucleotide sequence, and expression of one of two genes coding for yeast elongation factor 1α. J. Biol. Chem. 260:3090–3096.
  • Devlin, C., K. Tice-Baldwin, D. Shore, and Κ. Τ. Arndt. 1991. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 11:3642–3651.
  • Edens, L., I. Bom, A. M. Ledeboer, J. Maat, M. Y. Toonen, C. Visser, and C. T. Verrips. 1984. Synthesis and processing of plant protein thaumatin in yeast. Cell 37:629–633.
  • Ephrussi, Α., G. M. Church, S. Tonegawa, and W. Gilbert. 1985. Β lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134–140.
  • Fedor, M. J., N. F. Lue, and R. D. Kornberg. 1988. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204:109–127.
  • Fraenkel, D. G. 1982. Carbohydrate metabolism, p. 1–37. In J. N. Strathern, E. W. Jones, and J. R. Borach (ed.), The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Fried, M., and D. M. Crothers. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9:6505–6525.
  • Garner, Μ. Μ., and A. Revzin. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: applications to components of Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9:3037–3060.
  • Green, J. B., A. P. Wright, W. Y. Cheung, W. E. Lancashire, and B. S. Hartley. 1988. The structure and regulation of phos-phoglucose isomerase in Saccharomyces cerevisiae. Mol. Gen. Genet. 215:100–106.
  • Guarente, L., B. Lalonde, P. Gifford, and E. Alani. 1984. Distinctly regulated tandem upstream activation sites mediate catabolite repression of CYC1 gene of S. cerevisiae. Cell 36:503–511.
  • Heinisch, J., K. Vogelsang, and C. P. Hollenberg. 1991. Transcriptional control of yeast phosphofructokinase gene expression. FEBS Lett. 289:77–82.
  • Heinisch, J., R. C. von Borstel, and R. Rodicio. 1991. Sequence and localization of the gene encoding yeast phosphoglycerate mutase. Curr. Genet. 20:167–171.
  • Herruer, M. H., W. H. Mager, L. P. Woudt, R. Τ. Μ. Nieuwint, G. M. Wassenaar, P. Groeneveld, and R. J. Planta. 1987. Transcriptional control of yeast ribosomal protein synthesis during carbon-source upshift. Nucleic Acids Res. 15:10133–10144.
  • Hess, B., A. Boiteux, and J. Kruger. 1969. Cooperation of glycolytic enzymes. Adv. Enzyme Regul. 7:149–169.
  • Holland, J. P., and M. J. Holland. 1980. Structural comparison of two nontandemly repeated yeast glyceraldehyde-3 phosphate dehydrogenase genes. J. Biol. Chem. 255:2596–2605.
  • Holland, M. J., T. Yokoi, J. P. Holland, K. Myambo, and M. A. Innis. 1987. The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:813–820.
  • Huet, J., P. Cottrelle, M. Cool, M. L. Vignais, D. Thiele, C. Marck, J. M. Buhler, A. Sentenac, and P. Fromageot. 1985. A general upstream binding factor for genes of the yeast translational apparatus. EMBO J. 4:3539–3547.
  • Karim, F. D., L. D. Urness, C. S. Thummel, M. J. Klemsz, S. R. McKercher, A. Celada, C. VanBeveren, R. A. Maki, C. V. Gunther, J. A. Nye, and B. J. Graves. 1990. The ETS-domain: a new DNA-binding motif that recognizes a purine-rich core DNA sequence. Genes Dev. 4:1451–1453.
  • Kellerman, E., and C. P. Hollenberg. 1988. The glucose- and ethanol-dependent regulation of PDC1 from Saccharomyces cerevisiae are controlled by two distinct promoter regions. Curr. Genet. 14:337–334.
  • Kief, D. R., and J. R. Warner. 1981. Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:1007–1015.
  • Larkin, J. C., J. R. Thompson, and J. L. Woolford, Jr. 1987. Structure and expression of the Saccharomyces cerevisiae CRY1 gene: a highly conserved ribosomal protein gene. Mol. Cell. Biol. 7:1764–1775.
  • Machida, Μ., Υ. Jigami, and H. Tanaka. 1989. Purification and characterization of a nuclear factor which binds specifically to the upstream activation sequence of Saccharomyces cerevisiae enolase 1 gene. Eur. J. Biochem. 184:305–311.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–559.
  • McAlister, L., and M. J. Holland. 1985. Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes. J. Biol. Chem. 260:15013–15018.
  • McNeil, J. B., P. Dykshoorn, J. N. Huy, and S. Small. 1990. The DNA-binding protein RAP1 is required for efficient transcriptional activation of the yeast PYK glycolytic gene. Curr. Genet. 18:405–412.
  • Morrow, B. E., S. P. Johnson, and J. R. Warner. 1989. Proteins that bind to the yeast rDNA enhancer. J. Biol. Chem. 264:9061–9068.
  • Nagashima, K., M. Kasai, S. Nagata, and Y. Kaziro. 1986. Structure of the two genes coding for polypeptide chain elongation factor 1α (EF-1α) from Saccharomyces cerevisiae. Gene 45:265–273.
  • Nishizawa, M., R. Araki, and Y. Teranishi. 1989. Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 9:442–451.
  • Ogden, J. E., C. Stanway, S. Kim, J. Mellor, A. J. Kingsman, and S. M. Kingsman. 1986. Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activating sequence but does not require TATA sequences. Mol. Cell. Biol. 6:4335–4343.
  • Pearson, W. R. 1990. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183:63–98.
  • Pearson, W. R. 1991. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics 11:635–650.
  • Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444–2448.
  • Pfeifer, K., B. Arcangioli, and L. Guarente. 1987. Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene. Cell 49:9–18.
  • Riggs, P. D. 1990. Expression and purification of maltose-binding protein fusions, p. 16.6.1–16.6.10. In F. M. Ausubel et al. (ed.), Current protocols in molecular biology. Green Publishing Associates and Wiley Interscience, New York.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Santangelo, G. M., and J. Tornow. 1990. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites. Mol. Cell. Biol. 10:859–862.
  • Schwelberger, H. G., S. D. Kohlwein, and F. Paltauf. 1989. Molecular cloning, primary structure and disruption of the structural gene of aldolase from Saccharomyces cerevisiae. Eur. J. Biochem. 180:301–308.
  • Scott, E. W., H. E. Allison, and H. V. Baker. 1990. Characterization of TPI gene expression in isogeneic wild-type and gcr1-deletion mutant strains of Saccharomyces cerevisiae. Nucleic Acids Res. 18:7099–7107.
  • Scott, E. W., and H. V. Baker. Unpublished observation.
  • Shore, D., and K. Nasmyth. 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732.
  • Stanway, C., J. Mellor, J. E. Ogden, A. J. Kingsman, and S. M. Kingsman. 1987. The UAS of the yeast PGK gene contains functionally distinct domains. Nucleic Acids Res. 15:6855–6873.
  • Tornow, J., and G. M. Santangelo. 1990. Efficient expression of the Saccharomyces cerevisiae glycolytic gene ADH1 is dependent upon a cis-acting regulatory element (UASRPG) found initially in genes encoding ribosomal proteins. Gene 90:79–85.
  • Uemura, H., and D. G. Fraenkel. 1990. gcr2, a new mutation affecting glycolytic gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:6389–6396.
  • Vignais, M.-L., J. Huet, J.-M. Buhler, and A. Sentenac. 1990. Contacts between the factor TUF and RPG sequences. J. Biol. Chem. 265:14669–14674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.