9
Views
16
CrossRef citations to date
0
Altmetric
Gene Expression

The Rate-Limiting Step in Yeast PGK1 mRNA Degradation Is an Endonucleolytic Cleavage in the 3′-Terminal Part of the Coding Region

&
Pages 2986-2996 | Received 11 Dec 1991, Accepted 14 Apr 1992, Published online: 01 Apr 2023

References

  • Atwater, J. Α., R. Wisdom, and I. M. Verma. 1990. Regulated mRNA stability. Annu. Rev. Genet. 24:519–541.
  • Barker, G. F., and K. Beemon. 1991. Nonsense codons within the Rous sarcoma virus gag gene decrease the stability of unspliced viral RNA. Mol. Cell. Biol. 11:2760–2768.
  • Baserga, S. J., and E. J. Benz, Jr. 1988. Nonsense mutations in the human β-globin gene affect mRNA metabolism. Proc. Natl. Acad. Sci. USA 85:2056–2060.
  • Belasco, J. G., and C. F. Higgins. 1988. Mechanisms of mRNA decay in bacteria: a perspective. Gene 72:15–23.
  • Bernstein, P., S. W. Peltz, and J. Ross. 1989. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol. 9:659–670.
  • Binder, R., S.-P. L. Hwang, R. Ratnasabapathy, and D. L. Williams. 1989. Degradation of apolipoprotein II mRNA occurs via endonucleolytic cleavage at 5′-AAU-375′-UAA-3′ elements in single-stranded loop domains of the 3′-noncoding region. J. Biol. Chem. 264:16910–16918.
  • Bohjanen, P. R., B. Petryniak, C. H. June, C. B. Thompson, and T. Lindsten. 1991. An inducible cytoplasmic factor (AU-B) binds selectively to AUUUA multimers in the 3′ untranslated region of lymphokine messenger RNA. Mol. Cell. Biol. 11:3288–3295.
  • Bouvet, P., J. Paris, M. Philippe, and Η. Β. Osborne. 1991. Degradation of a developmentally regulated mRNA in Xenopus embryos is controlled by the 3′ region and requires the translation of another maternal mRNA. Mol. Cell. Biol. 11:3115–3124.
  • Brawerman, G. 1989. mRNA decay: finding the right targets. Cell 57:9–10.
  • Brewer, G. 1991. An A+U-rich element RNA-binding factor regulates c-myc messenger RNA stability in vitro. Mol. Cell. Biol. 11:2460–2466.
  • Brewer, G., and J. Ross. 1989. Regulation of c-myc mRNA stability in vitro by a labile destabilizer with an essential nucleic acid component. Mol. Cell. Biol. 9:1996–2006.
  • Brown, A. J. P. 1989. Messenger RNA stability in yeast. Yeast 5:239–257.
  • Caput, D., B. Beutler, K. Hartog, R. Thayer, S. Brown-Shimmer, and A. Cerami. 1986. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83:1670–1674.
  • Casey, J. L., D. M. Koeller, V. C. Ramin, R. D. Klausner, and J. B. Harford. 1989. Iron regulation of transferrin receptor mRNA requires iron-responsive elements and a rapid turnover determinant in the 3′ untranslated region of the mRNA. EMBO J. 8:3693–3699.
  • Gay, D. Α., S. S. Sisodia, and D. W. Cleveland. 1989. Autoregulatory control of β-tubulin mRNA stability is linked to translation elongation. Proc. Natl. Acad. Sci. USA 86:5763–5767.
  • Gozalbo, D., and S. Hohmann. 1990. Nonsense suppressors partially revert the decrease of the mRNA level of a nonsense mutant allele in yeast. Curr. Genet. 17:77–79.
  • Graves, R. Α., Ν. Β. Pandey, Ν. Chodchoy, and W. F. Marzluff. 1987. Translation is required for histone mRNA degradation. Cell 48:615–626.
  • Henderson, E. R., C. C. Hardin, S. K. Walk, I. Tinoco, Jr., and Ε. Η. Blackburn. 1987. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell 51:899–908.
  • Herrick, D., R. Parker, and A. Jacobson. 1990. Identification of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2269–2284.
  • Hitzeman, R. Α., F. E. Hagie, J. S. Hayflick, C. Y. Chen, P. H. Seeburg, and R. Derynck. 1982. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucleic Acids Res. 10:7791–7808.
  • Hoekema, Α., R. A. Kastelein, M. Vasser, and H. A. de Boer. 1987. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol. Cell. Biol. 7:2914–2924.
  • Hwang, S.-P. L., M. Eisenberg, R. Binder, G. S. Shelness, and D. L. Williams. 1989. Predicted structures of apolipoprotein II mRNA constrained by nuclease and dimethyl sulfate reactivity: stable secondary structures occur predominantly in local domains via intraexonic base pairing. J. Biol. Chem. 264:8410–8418.
  • Iwai, Y., M. Bickel, D. H. Pluznik, and R. B. Cohen. 1991. Identification of sequences within the murine granulocyte-macrophage colony-stimulating factor messenger RNA 3′-untranslated region that mediate messenger RNA stabilization induced by mitogen treatment of EL-4 thymoma cells. J. Biol. Chem. 266:17959–17965.
  • Jack, H.-M., J. Berg, and M. Wabl. 1989. Translation affects immunoglobulin mRNA stability. Eur. J. Immunol. 19:843–847.
  • Jones, E. 1976. Proteinase mutants of Saccharomyces cerevisiae. Genetics 85:23–33.
  • Kabnick, K. S., and D. E. Housman. 1988. Determinants that contribute to cytoplasmic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA. Mol. Cell. Biol. 8:3244–3250.
  • Kennedy, I. M., J. K. Haddow, and J. B. Clements. 1991. A negative regulatory element in the human papillomavirus type 16 genome acts at the level of late mRNA stability. J. Virol. 65:2093–2097.
  • Koeller, D. M., J. L. Casey, M. W. Hentze, Ε. Μ. Gerhardt, L.-N. L. Chan, R. D. Klausner, and J. B. Harford. 1989. A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. Proc. Natl. Acad. Sci. USA 86:3574–3578.
  • Laird-Offringa, Ι. Α., C. L. de Wit, P. Elfferich, and A. J. van der Eb. 1990. Poly(A)-tail shortening is the translation-dependent step in c-myc mRNA degradation. Mol. Cell. Biol. 10:6132–6140.
  • Lee, S. V., Y. Nakao, and R. M. Bock. 1968. The nucleases of yeast. II. Purification, properties and specificity of an endonuclease from yeast. Biochim. Biophys. Acta 151:126–136.
  • Leer, R. J., M. M. C. Van Ramsdonk-Duin, M. J. M. Hagendoorn, W. H. Mager, and R. J. Planta. 1984. Structural comparison of yeast ribosomal protein genes. Nucleic Acids Res. 12:6685–6700.
  • Losson, R., and F. Lacroute. 1979. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc. Natl. Acad. Sci. USA 76:5134–5137.
  • Matter, J. S. 1989. Identification of an AUUUA-specific messenger RNA binding protein. Science 246:664–666.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Marzluff, W. F., and Ν. Β. Pandey. 1988. Multiple regulatory steps control histone mRNA concentrations. Trends Biochem. Sci. 13:49–52.
  • Mead, D. J., and S. G. Oliver. 1983. Purification and properties of a double-stranded ribonuclease from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 137:501–507.
  • Minvielle-Sebastia, L., B. Winsor, N. Bonneaud, and F. Lacroute. 1991. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal messenger RNA decay rate: sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol. Cell. Biol. 11:3075–3087.
  • Müllner, E. W., and L. C. Kühn. 1988. A stem-loop in the 3′ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 53:815–825.
  • Müllner, E. W., B. Neupert, and L. C. Kuhn. 1989. A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58:373–382.
  • Munroe, D., and A. Jacobson. 1990. Tales of poly(A): a review. Gene 91:151–158.
  • Nonet, M., C. Scafe, J. Sexton, and R. Young. 1987. Eukaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol. Cell. Biol. 7:1602–1611.
  • Pandey, N. B., and W. F. Marzluff. 1987. The stem-loop structure at the 3′-end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell. Biol. 7:4557–4559.
  • Parker, R., and A. Jacobson. 1990. Translation and a 42-nucleotide segment within the coding region of the mRNA encoded by the MATa1 gene are involved in promoting rapid mRNA decay in yeast. Proc. Natl. Acad. Sci. USA 87:2780–2784.
  • Pelsy, F., and F. Lacroute. 1984. Effect of ochre nonsense mutations on yeast URA1 stability. Curr. Genet. 8:277–282.
  • Peltz, S. W., and J. Ross. 1987. Autogenous regulation of histone mRNA decay by histone proteins in a cell free system. Mol. Cell. Biol. 7:4345–4356.
  • Peppel, K., J. M. Vinci, and C. Baglioni. 1991. The AU-rich sequences in the 3′ untranslated region mediate the increased turnover of interferon mRNA induced by glucocorticoids. J. Exp. Med. 173:349–355.
  • Petersen, D. D., S. R. Koch, and D. K. Granner. 1989. 3′ Noncoding region of phosphoenolpyruvate carboxykinase mRNA contains a glucocorticoid-responsive mRNA-stabilizing element. Proc. Natl. Acad. Sci. USA 86:7800–7804.
  • Ross, J. 1989. The turnover of messenger RNA. Sci. Am. 260:28–35.
  • Shaw, G., and R. Kamen. 1986. A conserved AU sequence from the 3′-untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667.
  • Shyu, A.-B., J. G. Belasco, and Μ. Ε. Greenberg. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5:221–231.
  • Soloway, P. D., and T. Shenk. 1990. The adenovirus type 5 I-leader open reading frame functions in cis to reduce the half-life of L1 mRNAs. J. Virol. 64:551–558.
  • Stevens, A. 1980. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′→3′ mode of hydrolysis. J. Biol. Chem. 255:3080–3085.
  • Stevens, A. 1985. Pyrimidine-specific cleavage by an endoribonuclease of Saccharomyces cerevisiae. J. Bacteriol. 164:57–62.
  • Stevens, A. 1986. Novel specificity of an endoribonuclease of yeast. FEBS Lett. 205:210–214.
  • Stevens, Α., and Μ. Κ. Maupin. 1987. A 5′→3′ exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. Arch. Biochem. Biophys. 252:339–347.
  • Stoeckle, M. Y., and H. Hanafusa. 1989. Processing of 9E3 mRNA and regulation of its stability in normal and Rous sarcoma virus-transformed cells. Mol. Cell. Biol. 9:4738–4745.
  • Theil, E. C. 1990. Regulation of ferritin and transferrin receptor mRNAs. J. Biol. Chem. 265:4771–4774.
  • Vakalopoulou, E., J. Schaack, and T. Shenk. 1991. A 32-kilodalton protein binds to AU-rich domains in the 3′ untranslated regions of rapidly degraded mRNAs. Mol. Cell. Biol. 11:3355–3364.
  • Van den Heuvel, J. J., R. J. M. Bergkamp, R. J. Planta, and H. A. Raue. 1989. Effect of deletions in the 5′-noncoding region on the translational efficiency of phosphoglycerate kinase mRNA in yeast. Gene 79:83–95.
  • Van den Heuvel, J. J., R. J. Planta, and H. A. Raue. 1990. Effect of leader primary structure on the translational efficiency of phosphoglycerate kinase mRNA in yeast. Yeast 6:473–482.
  • Vreken, P., N. Buddelmeijer, and H. A. Raue. Nucleic Acids Res., in press.
  • Vreken, P., R. van der Veen, V. C. H. F. de Regt, A. L. de Maat, R. J. Planta, and H. A. Raue. 1991. Turnover rate of yeast PGK mRNA can be changed by specific alterations in its trailer structure. Biochimie 73:729–737.
  • Williamson, J. R., M. K. Raghuraman, and T. R. Cech. 1989. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59:871–880.
  • Wisdom, R., and W. Lee. 1991. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 5:232–243.
  • Xu, H. X., L. Johnson, and M. Grunstein. 1990. Coding and noncoding sequences at the 3′ end of yeast histone H2B mRNA confer cell cycle regulation. Mol. Cell. Biol. 10:2687–2694.
  • Yen, T. J., D. A. Gay, J. S. Pachter, and D. W. Cleveland. 1988. Autoregulated changes in stability of polyribosome-bound β-tubulin mRNAs are specified by the first 13 translated nucleotides. Mol. Cell. Biol. 8:1224–1235.
  • Yen, T. J., P. S. Machlin, and D. W. Cleveland. 1988. Autoregulated instability of β-tubulin mRNAs by recognition of the nascent amino terminus of β-tubulin. Nature (London) 334:580–585.
  • Zimmerman, S. B., G. H. Cohen, and D. R. Davies. 1975. X-ray fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. J. Mol. Biol. 92:181–192.
  • Zitomer, R. S., D. L. Montgomery, D. L. Nichols, and B. D. Hall. 1979. Transcriptional regulation of the yeast cytochrome c gene. Proc. Natl. Acad. Sci. USA 76:3627–3631.
  • Zucker, M., and P. Stiegler. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9:133–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.