2
Views
6
CrossRef citations to date
0
Altmetric
Gene Expression

In Vivo Splicing of the β Tropomyosin Pre-mRNA: A Role for Branch Point and Donor Site Competition

, &
Pages 3204-3215 | Received 30 Sep 1991, Accepted 15 Mar 1992, Published online: 01 Apr 2023

References

  • Aebi, Μ., Η. Hornig, R. A. Padgett, J. Reiser, and C. Weissman. 1986. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47:555–565.
  • Aebi, M., H. Hornig, and C. Weissman. 1987. 5′ cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5′ splice region, not by the conserved 5′ GU. Cell 50:237–246.
  • Balvay, L. Unpublished data.
  • Balvay, L., et al. Unpublished data.
  • Barabino, S. M., B. J. Blencowe, U. Ryder, B. S. Sproat, and A. I. Lamond. 1990. Targeted snRNP depletion reveals an additional role for mammalian U1 snRNP in spliceosome assembly. Cell 63:293–302.
  • Bingham, P. M., T.-B. Chou, I. Mims, and Z. Zachar. 1988. On/off regulation of gene expression at the level of splicing. Trends Genet. 4:134–138.
  • Clouet-d’Orval, B., Y. d’Aubenton-Carafa, J. Marie, and E. Brody. 1991. Determination of an RNA structure involved in splicing inhibition of a muscle specific exon. J. Mol. Biol. 221:837–856.
  • Clouet-d’Orval, Β., Υ. d’Aubenton-Carafa, P. Sirand-Pugnet, E. Brody, and J. Marie. 1991. RNA structure represses utilization of a muscle specific exon in Hela cell nuclear extracts. Science 252:1823–1828.
  • Cooper, Τ. Α., and C. P. Ordhal. 1989. Nucleotide substitutions within the cardiac troponin Τ alternative exon disrupt pre-mRNA alternative splicing. Nucleic Acids Res. 17:7905–7921.
  • Eperon, L. P., J. P. Estibeiro, and I. C. Eperon. 1986. The role of nucleotide sequences in splice site selection in eukaryotic premessenger RNA. Nature (London) 324:280–282.
  • Garcia-Blanco, Μ. Α., S. Jamison, and P. A. Sharp. 1989. Identification and purification of a 62,000 dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev. 3:1874–1886.
  • Ge, H., and J. L. Manley. 1990. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62:25–34.
  • Ge, H., P. Zuo, and J. Manley. 1991. Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators. Cell 66:373–382.
  • Gelfand, M. S. 1989. Statistical analysis of mammalian pre-mRNA splicing sites. Nucleic Acids Res. 17:6369–6382.
  • Gerke, V., and J. A. Steitz. 1986. A protein associated with small nuclear ribonucleoprotein particles recognizes the 3′ splice site of premessenger RNA. Cell 47:973–984.
  • Gil, Α., P. A. Sharp, S. F. Jamison, and M. A. Garcia-Blanco. 1991. Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev. 5:1224–1236.
  • Goux-Pelletan, M., D. Libri, Y. D’Aubenton-Carafa, M. Fiszman, E. Brody, and J. Marie. 1990. In vitro splicing of mutually exclusive exons from the chicken beta-tropomyosin gene: role of the branch point location and very long pyrimidine stretch. EMBO J. 9:241–249.
  • Guo, W., G. J. Mulligan, S. Wormsley, and D. Helfman. 1991. Alternative splicing of β tropomyosin pre-mRNA: cis-acting elements and cellular factors that block the use of a skeletal muscle exon in nonmuscle cells. Genes Dev. 5:2096–2107.
  • Hampson, R. K., L. La Follette, and F. M. Rottman. 1989. Alternative processing of bovine growth hormone mRNA is influenced by downstream exon sequences. Mol. Cell. Biol. 9:1604–1610.
  • Helfman, D. M., S. Cheley, E. Kuismanen, L. A. Finn, and Y. Yamawaki-Kataota. 1986. Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol. Cell. Biol. 6:3582–3595.
  • Helfman, D. M., R. F. Roscigno, G. J. Mulligan, L. A. Finn, and K. S. Weber. 1990. Identification of two distinct intron elements involved in alternative splicing of β tropomyosin pre-mRNA. Genes Dev. 4:98–110.
  • Hodgkin, J. 1989. Drosophila sex determination: a cascade of regulated splicing. Cell 56:905–906.
  • Hoshijima, K., K. Inoue, I. Higuchi, H. Sakamoto, and Y. Shimura. 1991. Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 252:833–836.
  • Inoue, K., K. Hoshijima, H. Sakamoto, and Y. Shimura. 1990. Binding of the Drosophila Sex-lethal gene product to the alternative splice site of the transformer primary transcript. Nature (London) 344:461–463.
  • Krainer, A. R., G. C. Conway, and D. Kazak. 1990. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 62:35–42.
  • Krainer, A. R., A. Mayeda, D. Kozak, and G. Binns. 1991. Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, Ul 70K, and Drosophila splicing regulators. Cell 66:383–394.
  • Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.
  • Kuo, H.-C., F.-U. H. Nasim, and P. J. Grabowski. 1991. Control of alternative splicing by the differential binding of Ul small nuclear ribonucleoprotein particle. Science 251:1045–1050.
  • Lear, A. L., L. P. Eperon, I. M. Wheatley, and I. C. Eperon. 1990. Hierarchy for 5′ splice site preference determined in vivo. J. Mol. Biol. 211:103–115.
  • Lemonnier, M., L. Balvay, V. Mouly, D. Libri, and Μ. Υ. Fiszman. 1991. The chicken α fast tropomyosin gene: organization, expression and identification of the major gene products. Gene 107:229–240.
  • Libri, D., M. Goux-Pelletan, E. Brody, and M. Fiszman. 1990. Exon as well as intron sequences are cis regulating elements for the mutually exclusive alternative splicing of the β tropomyosin gene. Mol. Cell. Biol. 10:5036–5046.
  • Libri, D., M. Lemonnier, T. Meinnel, and Μ. Υ. Fiszman. 1989. A single gene codes for the β subunit of smooth and skeletal muscle tropomyosin in the chicken. J. Biol. Chem. 264:2935–2944.
  • Libri, D., J. Marie, E. Brody, and Μ. Υ. Fiszman. 1989. A subfragment of the beta tropomyosin gene is alternatively spliced when transfected into differentiating muscle cells. Nucleic Acids Res. 17:6449–6462.
  • Libri, D., V. Mouly, M. Lemonnier, and M. Fiszman. 1990. A non muscle tropomyosin is encoded by the smooth/skeletal beta tropomyosin gene and its RNA is transcribed from an internal promoter. J. Biol. Chem. 265:3471–3473.
  • Libri, D., A. Piseri, and Μ. Υ. Fiszman. 1991. Tissue specific splicing in vivo of the β tropomyosin gene: dependence on an RNA secondary structure. Science 252:1842–1845.
  • Lindquester, G. J., J. E. Flach, D. E. Fleenor, Κ. Η. Hickman, and R. B. Devlin. 1989. Avian tropomyosin gene. Nucleic Acids Res. 17:2099–2117.
  • Mardon, H. J., G. Sebastio, and F. E. Baralle. 1987. A role for exon sequences in alternative splicing of the human fibronectin gene. Nucleic Acids Res. 15:7725–7733.
  • Montarras, D., and Μ. Υ. Fiszman. 1983. A new phenotype is expressed by subcultured quail myoblasts isolated from future fast and slow muscles. J. Biol. Chem. 258:3883–3888.
  • Mullen, M. P., C. W. J. Smith, J. G. Patton, and B. Nadal-Ginard. 1991. α-Tropomyosin mutually exclusive exon selection: competition between branch point/polypyrimidine tracts determines default exon choice. Genes Dev. 5:642–655.
  • Noble, J. C. S., C. Prives, and J. L. Manley. 1988. Alternative splicing of SV40 early pre-mRNA is determined by branch site selection. Genes Dev. 2:1460–1475.
  • Ohshima, Y., and Y. Gotoh. 1987. Signals for the selection of a splice site in pre-mRNA. Computer analysis of splice junction sequences and like sequences. J. Mol. Biol. 195:247–259.
  • Patton, J. G., S. A. Mayer, P. Tempst, and B. Nadal-Ginard. 1991. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev. 5:1237–1251.
  • Reed, R. 1989. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3:2113–2123.
  • Reed, R., and T. Maniatis. 1988. The role of mammalian branchpoint sequence in pre-mRNA splicing. Genes Dev. 2:1268–1276.
  • Robberson, B. L., G. J. Cote, and S. M. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Ruiz-Opazo, N., and B. Nadal-Ginard. 1987. α-Tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J. Biol. Chem. 262:4755–4765.
  • Ruskin, B., P. D. Zamore, and M. R. Green. 1988. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 52:207–219.
  • Ryner, L. C., and B. S. Baker. 1991. Regulation of doublesex pre-mRNA processing occurs by 3′ splice site activation. Genes Dev. 5:2071–2085.
  • Shapiro, Μ. Β., and P. Senapathy. 1987. RNA splice junction of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15:7155–7174.
  • Siebel, C. W., and D. Rio. 1990. Regulated splicing of the Drosophila Ρ transposable element third intron in vitro: somatic repression. Science 248:1200–1208.
  • Smith, C. W. J., and B. Nadal-Ginard. 1989. Mutually exclusive splicing of alpha tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 56:749–758.
  • Smith, C. W. J., E. B. Porro, J. G. Patton, and B. Nadal-Ginard. 1989. Scanning from an independently specified branch point defines the 3′ splice site of mammalian introns. Nature (London) 342:243–247.
  • Stolow, D. T., and S. M. Berget. 1991. Identification of nuclear proteins that specifically bind to RNAs containing 5′ splice sites. Proc. Natl. Acad. Sci. USA 88:320–324.
  • Talerico, M., and S. M. Berget. 1990. Effect of 5′ splice site mutations on splicing of the preceding intron. Mol. Cell. Biol. 10:6299–6305.
  • Tazi, J., C. Alibert, J. Temsamani, I. Reveillaud, G. Cathala, C. Brunei, and P. Jeanteur. 1986. A protein that specifically recognizes the 3′ splice site of mammalian pre-mRNA introns is associated with a small nuclear ribonucleoprotein. Cell 47:755–766.
  • Wieczorek, D. F., C. W. J. Smith, and B. Nadal-Ginard. 1988. The rat α tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth, and nonmuscle isoforms by alternative splicing. Mol. Cell. Biol. 8:679–694.
  • Wu, J., and J. L. Manley. 1989. Mammalian pre-mRNA branch site selection by U2 sn RNP involves base pairing. Genes Dev. 3:1553–1561.
  • Zamore, P. D., and M. R. Green. 1991. Biochemical characterization of U2 snRNP auxiliary factor: an essential pre-mRNA splicing factor with a novel intranuclear distribution. EMBO J. 10:207–214.
  • Zhuang, Y., A. M. Goldstein, and A. M. Weiner. 1989. UAC-UAAC is the preferred branch site for mammalian mRNA splicing. Proc. Natl. Acad. Sci. USA 86:2752–2756.
  • Zhuang, Υ., Η. Leung, and A. Weiner. 1987. The natural 5′ splice site of simian virus 40 large Τ antigen can be improved by increasing the base complementarity to U1 RNA. Mol. Cell. Biol. 7:3018–3020.
  • Zhuang, Y., and A. Weiner. 1989. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes Dev. 3:1545–1552.
  • Zhuang, Y., and A. M. Weiner. 1986. A compensatory base change in Ul snRNA suppresses a 5′ splice site mutation. Cell 46:827–835.
  • Zillmann, M., S. D. Rose, and S. M. Berget. 1987. U1 small nuclear ribonucleoproteins are required early during spliceosome assembly. Mol. Cell. Biol. 7:2877–2883.
  • Zorn, A. M., and P. A. Krieg. 1991. PCR analysis of alternative splicing pathways: identification of artifacts generated by heteroduplex formation. BioTechniques 11:181–183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.