4
Views
18
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Replication Forks Pause at Yeast Centromeres

&
Pages 4056-4066 | Received 27 Apr 1992, Accepted 29 Jun 1992, Published online: 01 Apr 2023

References

  • Baker, R. E., M. Fitzgerald-Hayes, and T. C. O’Brien. 1989. Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site. J. Biol. Chem. 264:10843–10850.
  • Bedinger, B. J., M. Hochstrasser, C. V. Jongeneel, and B. M. Alberts. 1983. Properties of the T4 DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 34:115–123.
  • Bell, B. I., L. J. DeGennaro, D. H. Gelfand, R. J. Bishop, P. Valenzuela, and W. J. Rutter. 1977. Ribosomal RNA genes of Saccharomyces cerevisiae: physical map of the repeating unit and location of the region coding for the 5S, 5.8S, 18S and 25S ribosomal RNAs. J. Biol. Chem. 252:8118–8125.
  • Bloom, K. S., and J. Carbon. 1982. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell 29:305–317.
  • Bonne-Andrea, C., M. L. Wong, and B. M. Alberts. 1990. In vitro replication through nucleosomes without histone displacement. Nature (London) 343:719–726.
  • Bram, R. J., and R. D. Kornberg. 1987. Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol. Cell. Biol. 7:403–409.
  • Brewer, B. J. 1988. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53:679–686.
  • Brewer, B. J., and W. L. Fangman. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Brewer, B. J., and W. L. Fangman. 1988. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643.
  • Brewer, B. J., and W. L. Fangman. Personal communication.
  • Cai, M., and R. W. Davis. 1989. Purification of a yeast centromere-binding protein that is able to distinguish single base-pair mutations in its recognition site. Mol. Cell. Biol. 9:2544–2550.
  • Carbon, J., and L. Clarke. 1984. Structural and functional analysis of a yeast centromere (CEN3). J. Cell Sci. 1:43–58.
  • Carbon, J., and L. Clarke. 1990. Centromere structure and function in budding and fission yeasts. New Biol. 2:10–19.
  • Clarke, L., and J. Carbon. 1980. Isolation of a yeast centromere and construction of functional small circular minichromosomes. Nature (London) 287:504–509.
  • Cumberledge, S., and J. Carbon. 1987. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203–212.
  • Davis, R. W., D. Botstein, and J. R. Roth. 1980. Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • deMassy, B., S. Bejar, J. Louarn, J.-M. Louarn, and J.-P. Bouche. 1987. Inhibition of replication forks exiting the terminus region of the Escherichia coli chromosome occurs at two loci separated by 5 min. Proc. Natl. Acad. Sci. USA 84:1759–1763.
  • Densmore, L., W. E. Payne, and M. Fitzgerald-Hayes. 1991. In vivo genomic footprint of a yeast centromere. Mol. Cell. Biol. 11:154–165.
  • Dhar, V., and C. L. Schildkraut. 1991. Role of EBNA-1 in arresting replication forks at the Epstein-Barr virus oriP family of tandem repeats. Mol. Cell. Biol. 11:6268–6278.
  • Fangman, W. L., and B. J. Brewer. 1991. Activation of replication origins within yeast chromosomes. Annu. Rev. Cell Biol. 7:375–402.
  • Fitzgerald-Hayes, M., and J. Carbon. 1982. Identification of DNA sequences required for mitotic stability of centromere plasmids in yeast. Recent Adv. Yeast Mol. Biol. 1:1–12.
  • Fitzgerald-Hayes, M., L. Clarke, and J. Carbon. 1982. Nucleotide sequence comparison and functional analysis of yeast centromere DNAs. Cell 29:235–244.
  • Gahn, T. A., and C. L. Schildkraut. 1989. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the nitiation and termination sites of DNA replication. Cell 58:527–535.
  • Gaudet, A., and M. Fitzgerald-Hayes. 1987. Alterations in the adenine-plus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:68–75.
  • Greenfeder, S. A., and C. S. Newlon. A replication map of a 61kb circular derivative of Saccharomyces cerevisiae chromosome III. Mol. Biol. Cell, in press.
  • Greenfeder, S. A., and C. S. Newlon. Unpublished data.
  • Hegemann, J. H., R. D. Pridmore, R. Schneider, and P. Philippsen. 1986. Mutations in the right boundary of Saccharomyces cerevisiae centromere 6 lead to nonfunctional or partially functional centromeres. Mol. Gen. Genet. 205:305–311.
  • Hegemann, J. H., J. H. Shero, G. Cottarel, P. Philippsen, and P. Hieter. 1988. Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2523–2535.
  • Hidaka, M., M. Akiyama, and T. Horiuchi. 1988. A consensus sequence of three DNA replication terminus sites on the E. coli chromosome is highly homologous to the terR sites of the R6K plasmid. Cell 55:467–475.
  • Hill, T. M., J. M. Henson, and P. L. Kuempel. 1987. The terminus region of the Escherichia coli chromosome contains two separate loci that exhibit polar inhibition of replication. Proc. Natl. Acad. Sci. USA 84:1754–1758.
  • Hill, T. M., B. J. Kopp, and P. L. Kuempel. 1988. Termination of DNA replication in Escherichia coli requires a trans-acting factor. J. Bacteriol. 170:662–668.
  • Hill, T. M., A. J. Pelletier, M. L. Tecklenburg, and P. L. Kuempel. 1988. Identification of the DNA sequence from the E. coli terminus region that halts replication forks. Cell 55:459–466.
  • Holmberg, S. 1982. Genetic differences between Saccharomyces carlsbergensis and Saccharomyces cerevisiae II. Restriction endonuclease analysis of genes in chromosome III. Carlsberg Res. Commun. 47:233–244.
  • Hsiao, C.-L., and J. Carbon. 1981. Direct selection procedure for the isolation of functional centromeric DNA. Proc. Natl. Acad. Sci. USA 78:3760–3764.
  • Huberman, J. A., L. D. Spotila, K. A. Nawotka, S. M. El-Assouli, and L. R. Davis. 1987. The in vivo replication origin of the yeast 2μm plasmid. Cell 51:473–481.
  • Ito, H., Y. Fukada, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jiang, W., and P. Philippsen. 1989. Purification of a protein binding to the CDEI subregion of Saccharomyces cerevisiae centromere DNA. Mol. Cell. Biol. 9:5585–5593.
  • Johnston, L. H., and D. H. Williamson. 1978. An alkaline sucrose gradient analysis of the mechanism of nuclear DNA synthesis in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 164:217–225.
  • Jongeneel, C. V., T. Formosa, M. Munn, and B. M. Alberts. 1984. Enzymological studies of the T4 replication proteins. Adv. Exp. Med. Biol. 179:17–33.
  • Krysan, P. J., and M. P. Calos. 1991. Replication initiates at multiple locations on an autonomously replicating plasmid in human cells. Mol. Cell. Biol. 11:1464–1472.
  • Lechner, J., and J. Carbon. 1991. A 240 kD multisubunit protein complex (CBF3) is a major component of the budding yeast centromere. Cell 64:717–727.
  • Linskens, M. H. K., and J. A. Huberman. 1988. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4927–4935.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mann, C., and R. W. Davis. 1986. Structure and sequence of the centromeric DNA of chromosome IV in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:241–245.
  • Martin-Parras, L., P. Hernandez, M. L. Martinez-Robles, and J. B. Schvartzman. 1991. Unidirectional replication as visualized by two-dimensional agarose gel electrophoresis. J. Mol. Biol. 220:1–11.
  • McCarroll, R. M., and W. L. Fangman. 1988. Time of replication of yeast centromeres and telomeres. Cell 54:505–513.
  • McGrew, J., B. Diehl, and M. Fitzgerald-Hayes. 1986. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:530–538.
  • Mellor, J., W. Jiang, M. Funk, J. Rathjen, C. A. Barnes, T. Hinz, J. H. Hegemann, and P. Philippsen. 1990. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 9:4017–4026.
  • Mirkovitch, J., M.-E. Mirault, and U. K. Laemmli. 1984. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39:223–232.
  • Newlon, C. S. 1988. Yeast chromosome replication and segregation. Microbiol. Rev. 52:568–601.
  • Newlon, C. S., L. R. Lipchitz, I. Collins, A. Deshpande, R. J. Devenish, R. P. Green, H. L. Klein, T. G. Palzkill, R. Ren, S. Synn, and S. T. Woody. 1991. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and location of ARS elements. Genetics 129:343–357.
  • Ng, R., and J. Carbon. 1987. Mutational and in vitro proteinbinding studies on centromere DNA from Saccharomyces cerevisiae. Mol. Cell. Biol. 7:4522–4534.
  • Nilsson-Tillgren, T. 1981. Genetic differences between Saccharomyces carlsbergensis and Saccharomyces cerevisiae. Analysis of chromosome III by single chromosome transfer. Carlsberg Res. Commun. 46:65–76.
  • Palmer, D. K., K. O’Day, H. L. Trong, H. Charbonneau, and R. L. Margolis. 1991. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl. Acad. Sci. USA 88:3734–3738.
  • Palzkill, T. G., and C. S. Newlon. 1988. A yeast replication origin consists of multiple copies of a small conserved sequence. Cell 53:441–450.
  • Panzeri, L., L. Landonio, A. Stotz, and P. Philippsen. 1985. Role of conserved sequence elements in yeast centromere DNA. EMBO J. 4:1867–1874.
  • Rawlins, D. R., G. Milman, S. D. Hayward, and G. S. Hayward. 1985. Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42:859–868.
  • Reynolds, A. E., R. M. McCarroll, C. S. Newlon, and W. L. Fangman. 1989. Time of replication of ARS elements along yeast chromosome III. Mol. Cell. Biol. 9:4488–4497.
  • Saffer, L. D., and O. L. Miller, Jr. 1986. Electron microscopic study of Saccharomyces cerevisiae rDNA chromatin replication. Mol. Cell. Biol. 6:1148–1157.
  • Saunders, M., M. Fitzgerald-Hayes, and K. Bloom. 1988. Chromatin structure of altered yeast centromeres. Proc. Natl. Acad. Sci. USA 85:175–179.
  • Saunders, M. J., E. Yeh, M. Grunstein, and K. Bloom. 1990. Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres. Mol. Cell. Biol. 10:5721–5727.
  • Smith, G. E., and M. D. Summers. 1980. The bidirectional transfer of DNA and RNA to nitrocellulose or diazoben-zyloxymethyl-paper. Anal. Biochem. 109:123–129.
  • Strahl, K., D. T. Stinchcomb, S. Scherer, and R. W. Davis. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.
  • Surosky, R. T., and B.-K. Tye. 1985. Resolution of dicentric chromosomes by Ty-mediated recombination in yeast. Genetics 110:397–419.
  • Van Houten, J. V., and C. S. Newlon. 1990. Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol. Cell. Biol. 10:3917–3925.
  • Van Houten, J. V., and C. S. Newlon. Unpublished data.
  • Widom, J. 1989. Toward a unified model of chromatin folding. Annu. Rev. Biophys. Biophys. Chem. 18:365–395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.