10
Views
6
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Schizosaccharomyces pombe Spk1 is a Tyrosine-Phosphorylated Protein Functionally Related to Xenopus Mitogen-Activated Protein Kinase

, , , , &
Pages 6427-6434 | Received 25 Jan 1993, Accepted 30 Jul 1993, Published online: 31 Mar 2023

References

  • Ann, N., R. Seger, R. Bratlien, C. Diltz, N. Tonks, and E. Krebs. 1991. Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J. Biol. Chem. 266:4220–4227.
  • Anderson, N. G., J. L. Mailer, N. K. Tonks, and T. W. Sturgill. 1990. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature (London) 343:651–653.
  • Beach, D., M. Piper, and P. Nurse. 1982. Construction of a Schizosaccharomyces pombe gene bank in a yeast bacterial shuttle vector and its use to isolate genes by complementation. Mol. Gen. Genet. 187:326–329.
  • Beach, D., L. Rodgers, and J. Gould. 1985. RNA1+ controls the transition from mitotic division to meiosis in fission yeast. Curr. Genet. 10:297–311.
  • Boguslawski, G., and J. O. Polazzi. 1987. Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: similarity of the predicted polypeptide to protein kinases. Proc. Natl. Acad. Sci. USA 84:5848–5852.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature (London) 348:125–132.
  • Brewster, J. L., T. de Valoir, N. D. Dwyer, E. Winter, and M. C. Gustin. 1993. An osmo-sensing signal transduction pathway in yeast. Science 259:1760–1763.
  • Cobb, M. H., D. J. Robbins, and T. G. Boulton. 1991. ERKs, extracellular signal-regulated MAP-2 kinases. Curr. Opin. Cell Biol. 3:1025–1032.
  • Courchesne, W., R. Kunisawa, and J. Thorner. 1989. A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell 58:1107–1119.
  • Crews, C. M., A. Alessandrini, and R. L. Erikson. 1992. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–480.
  • Crews, C. M., and R. L. Erikson. 1992. Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byrl gene product. Proc. Natl. Acad. Sci. USA 89:8205–8209.
  • Egel, R., and M. Egel-Mitani. 1974. Premeiotic DNA synthesis in fission yeast. Exp. Cell Res. 88:127–134.
  • Elion, E. A., P. L. Grisafi, and G. R. Fink. 1990. FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation. Cell 60:649–664.
  • Errede, B., A. Gartner, Z. Zhou, K. Nasmyth, and G. Ammerer. 1993. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature (London) 362:261–264.
  • Ferrell, J. E., Jr., M. Wu, J. C. Gerhart, and G. S. Martin. 1991. Cell cycle tyrosine phosphorylation of p34cdc2 and a microtu-bule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol. Cell. Biol. 11:1965–1971.
  • Fukui, Y., and Y. Kaziro. 1985. Molecular cloning and sequence analysis of a ras gene from Schizosaccharomyces pombe. EMBO J. 4:687–691.
  • Fukui, Y., Y. Kaziro, and M. Yamamoto. 1986. Mating phero-mone-like diffusible factor released by Schizosaccharomyces pombe. EMBO J. 5:1991–1993.
  • Fukui, Y., T. Kozasa, Y. Kaziro, T. Takeda, and M. Yamamoto. 1986. Role of a ras homolog in the life cycle of Schizosaccharomyces pombe. Cell 44:329–336.
  • Gartner, A., K. Nasmyth, and G. Ammerer. 1992. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6:1280–1292.
  • Gomez, N., and P. Cohen. 1991. Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature (London) 353:170–173.
  • Gotoh, Y., K. Moriyama, S. Matsuda, E. Okumura, T. Kishim-oto, H. Kawasaki, K. Suzuki, I. Yahara, H. Sakai, and E. Nishida. 1991. Xenopus M phase MAP kinase: isolation of its cDNA and activation by MPF. EMBO J. 10:2661–2668.
  • Gotoh, Y., E. Nishida, S. Matsuda, N. Shiina, H. Kosako, K. Shiokawa, T. Akiyama, K. Ohta, and H. Sakai. 1991. In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase. Nature (London) 349:251–254.
  • Gotoh, Y., E. Nishida, T. Yamashita, M. Hoshi, M. Kawakami, and H. Sakai. 1990. Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Identity with the mitogen-activated MAP kinase of fibroblastic cells. Eur. J. Biochem. 193:661–669.
  • Gould, K. L., and P. Nurse. 1989. Tyrosine phosphorylation of the fission yeast cdc2 protein kinase regulates entry into mitosis. Nature (London) 342:39–45.
  • Grimm, C., J. Kohli, J. Murray, and K. Maundrell. 1988. Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol. Gen. Genet. 215:81–86.
  • Gutz, H., H. Heslot, U. Leupold, and N. Loprieno. 1974. Schizosaccharomyces pombe. p. 395–446. In R. D. King (ed.), Handbook of genetics, vol. 1. Plenum Publishing Corp., New York.
  • Hattori, S., M. Fukuda, T. Yamashita, S. Nakamura, Y. Gotoh, and E. Nishida. 1992. Activation of mitogen-activated protein (MAP) kinase and its activator by ras in intact cells and in a cell-free system. J. Biol. Chem. 267:20346–20351.
  • Hoshi, M., E. Nishida, and H. Sakai. 1988. Activation of a Ca2+-inhibitable protein kinase that phosphorylates microtu-bule-associated protein 2 in vitro by growth factors, phorbol esters, and serum in quiescent cultured human fibroblasts. J. Biol. Chem. 263:5396–5401.
  • Hughes, D. A., Y. Fukui, and M. Yamamoto. 1990. Homologous activators of ras in fission and budding yeast. Nature (London) 344:355–357.
  • Imai, Y., S. Miyake, D. A. Hughes, and M. Yamamoto. 1991. Identification of a GTPase-activating protein homolog in Schizosaccharomyces pombe. Mol. Cell. Biol. 11:3088–3094.
  • Imai, Y., and M. Yamamoto. Unpublished data.
  • Irie, K., M. Takase, K. S. Lee, D. E. Levin, H. Araki, K. Matsumoto, and Y. Oshima. 1993. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 13:3076–3083.
  • Kataoka, T., S. Powers, C. McGill, O. Fasano, J. Strathern, J. Broach, and M. Wigler. 1984. Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37:437–455.
  • Kosako, H., Y. Gotoh, S. Matsuda, M. Ishikawa, and E. Nishida. 1992. Xenopus MAP kinase activator is a serine/threonine/ tyrosine kinase activated by threonine phosphorylation. EMBO J. 11:2903–2908.
  • Kosako, H., E. Nishida, and Y. Gotoh. 1993. cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO J. 12:787–794.
  • Lee, K. S., K. Irie, Y. Gotoh, Y. Watanabe, H. Araki, E. Nishida, K. Matsumoto, and D. E. Levin. 1993. A yeast mitogen-activated protein kinase homolog (Mpklp) mediates signalling by protein kinase C. Mol. Cell. Biol. 13:3067–3075.
  • Leevers, S. J., and C. J. Marshall. 1992. Activation of extracellular signal-regulated kinase, ERK2, by p21ras oncoprotein. EMBO J. 11:569–574.
  • Matsuda, S., H. Kosako, K. Takenaka, K. Moriyama, H. Sakai, T. Akiyama, Y. Gotoh, and E. Nishida. 1992. Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J. 11:973–982.
  • McLeod, M., M. Stein, and D. Beach. 1987. The product of the mei3+ gene, expressed under control of the mating-type locus, induces meiosis and sporulation in fission yeast. EMBO J. 6:729–736.
  • Miyasaka, T., M. Chao, P. Sheriine, and A. Saltiel. 1990. Nerve growth factor stimulates a protein kinase in PC-12 cells that phosphorylates microtubule-associated protein-2. J. Biol. Chem. 265:4730–4735.
  • Nadin-Davis, S. A., and A. Nasim. 1988. A gene which encodes a predicted protein kinase can restore some functions of the ras gene in fission yeast. EMBO J. 7:985–993.
  • Nadin-Davis, S. A., A. Nasim, and D. Beach. 1986. Involvement of ras in sexual differentiation but not in growth control in fission yeast. EMBO J. 5:2963–2971.
  • Nadin-Davis, S. A., R. C. A. Yang, S. A. Narang, and A. Nasim. 1986. The cloning and characterization of a RAS gene from Schizosaccharomyces pombe. J. Mol. Evol. 23:41–51.
  • Nakielny, S., D. G. Campbell, and P. Cohen. 1992. MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase. FEBS Lett. 308:183–189.
  • Neiman, A. M., B. J. Stevenson, H. P. Xu, G. F. Sprague, I. Herskowitz, M. Wigler, and S. Marcus. 1993. Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms. Mol. Biol. Cell 4:107–120.
  • Nishida, E., and Y. Gotoh. 1993. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Bio- chem. Sci. 18:128–131.
  • Okazaki, K., N. Okazaki, K. Kume, S. Jinno, K. Tanaka, and H. Okayama. 1990. High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by frans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 18:6485–6489.
  • Payne, D., A. Rossomando, P. Martino, A. Erickson, J. Her, J. Shabanowitz, D. Hunt, M. Weber, and T. W. Sturgill. 1991. Identification of the regulatory phosphorylation sites in pp42/ mitogen-activated protein kinase (MAP kinase). EMBO J. 10:885–892.
  • Pelech, S., and J. Sanghera. 1992. MAP kinases: charting the regulatory pathways. Science 257:1355–1356.
  • Posada, J., J. Sanghera, S. Pelech, R. Aebersold, and J. A. Cooper. 1991. Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Mol. Cell. Biol. 11:2517–2528.
  • Ray, L. B., and T. W. Sturgill. 1987. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc. Natl. Acad. Sci. USA 84:1502–1506.
  • Rossomando, A. J., D. M. Payne, M. Weber, and T. W. Sturgill. 1989. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc. Natl. Acad. Sci. USA 86:6940–6943.
  • Seger, R., N. Ann, J. Posada, E. Munar, A. Jensen, J. Cooper, M. Cobb, and E. Krebs. 1992. Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J. Biol. Chem. 267:14373–14381.
  • Shibuya, E., A. J. Polverino, E. Chang, M. Wigler, and J. Ruderman. 1992. Oncogenic Ras triggers the activation of 42-kDa mitogen-activated protein kinase in extracts of quiescent Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89:9831–9835.
  • Shirakabe, K., Y. Gotoh, and E. Nishida. 1992. A mitogen-activated protein (MAP) kinase activating factor in mammalian mitogen-stimulated cells is homologous to Xenopus M phase MAP kinase activator. J. Biol. Chem. 267:16685–16690.
  • Sturgill, T. W., and J. Wu. 1991. Recent progress in characterization of protein kinase cascades for phosphorylation of ribosomal protein S6. Biochim. Biophys. Acta 1092:350–357.
  • Styrkarsdottir, U., R. Egel, and O. Nielsen. 1992. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction. Mol. Gen. Genet. 235:122–130.
  • Tatchell, K., D. T. Chaleff, D. DeFeo-Jones, and E. M. Scolnick. 1984. Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature (London) 309:523–527.
  • Teague, M., D. T. Chaleff, and B. Errede. 1986. Nucleotide sequence of the yeast regulatory gene STE7 predicts a protein homologous to protein kinases. Proc. Natl. Acad. Sci. USA 83:7371–7375.
  • Thomas, S. M., M. DeMarco, G. D'Arcangelo, S. Halegoua, and J. S. Brugge. 1992. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68:1031–1040.
  • Toda, T., M. Shimanuki, and M. Yanagida. 1991. Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev. 5:60–73.
  • Toda, T., I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto, and M. Wigler. 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36.
  • Torres, L., H. Martin, M. I. Garcia-Saez, J. Arroyo, M. Molina, M. Sanchez, and C. Nombela. 1991. A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol. Microbiol. 5:2845–2854.
  • Wang, Y., H.-P. Xu, M. Riggs, L. Rodgers, and M. Wigler. 1991. byr2, a Schizosaccharomyces pombe gene encoding a protein kinase capable of partial suppression of the rasl mutant phenotype. Mol. Cell. Biol. 11:3554–3563.
  • Warbrick, E., and P. Fantes. 1991. The wisl protein kinase is a dosage-dependent regulator of mitosis in Schizosaccharomyces pombe. EMBO J. 10:4291–4299.
  • Wood, K. W., C. Sarnecki, T. M. Roberts, and J. Blenis. 1992. Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68:1041–1050.
  • Wu, J., H. Michel, A. Rossomando, T. Haystead, J. Shabanowitz, D. Hunt, and T. Sturgill. 1992. Renaturation and partial peptide sequencing of mitogen-activated protein kinase (MAP kinase) activator from rabbit skeletal muscle. Biochem. J. 285:701–705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.