4
Views
6
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Regulatory Element in the CHA1 Promoter Which Confers Inducibility by Serine and Threonine on Saccharomyces cerevisiae Genes

, , , &
Pages 7604-7611 | Received 08 Apr 1993, Accepted 24 Sep 1993, Published online: 31 Mar 2023

References

  • Ammerer, G., C. P. Hunter, J. H. Rothman, C. G. Saari, L. A. Vails, and T. H. Stevens. 1986. PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacoular enzyme required for processing of vacuolar precursors. Mol. Cell. Biol. 6:2490–2499.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York.
  • Benjamin, P. M., J.-I. Wu, A. P. Mitchell, and B. Magasanik. 1989. Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. Mol. Gen. Genet. 217:370–377.
  • Bornæs, C.%% 1991. Ph.D. thesis. University of Copenhagen, Copenhagen, Denmark.
  • Bornæs, C., J. G. L. Petersen, and S. Holmberg. 1992. Serine and threonine catabolism in Saccharomyces cerevisiae: the CHA1 polypeptide is homologous with other serine and threonine dehydratases. Genetics 131:531–539.
  • Bram, R. J., and R. D. Kornberg. 1985. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc. Natl. Acad. Sci. USA 82:43–47.
  • Brandriss, M. C.. 1983. Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT2 gene. Mol. Cell. Biol. 3:1846–1856.
  • Brindle, P. K., J. P. Holland, C. E. Willett, M. A. Innis, and M. J. Holland. 1990. Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and EN02: ABF1 protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription. Mol. Cell. Biol. 10:4872–4885.
  • Buchman, A. R., W. J. Kimmerly, J. Rine, and R. D. Kornberg. 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:210–225.
  • Cooper, T. G.. 1982. Nitrogen metabolism in Saccharomyces cerevisiae, p. 39–99. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces. Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
  • Cooper, T. G., L. Kovari, R. A. Sumrada, H.-D. Park, R. M. Luche, and I. Kovari. 1992. Nitrogen catabolite repression of arginase (CAR1) expression in Saccharomyces cerevisiae is derived from regulated inducer exclusion. J. Bacteriol. 174:48–55.
  • Cooper, T. G., R. Rai, and H. S. Yoo. 1989. Requirement of upstream activation sequences for nitrogen catabolite repression of the allantion system genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5440–5444.
  • Douglas, H. C., and D. C. Hawthorne. 1966. Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics 54:911–916.
  • Galas, D. J., and A. Schmitz. 1978. DNase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5:3157–3170.
  • Genbauffe, F. S., and T. G. Cooper. 1986. Induction and repression of the urea amidolyase gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3954–3964.
  • Grenson, M.%% 1983. Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 133:135–139.
  • Grenson, M., E. Dubois, M. Piotrowska, R. Drillien, and M. Aigle. 1974. Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Mol. Gen. Genet. 128:73–85.
  • Guarente, L., and M. Ptashne. 1981. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199–2203.
  • Guarente, L., R. R. Yocum, and P. Gifford. 1982. A GAL 10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79:7410–7414.
  • Halfter, H., B. Kavety, J. Vandekerckhove, F. Kiefer, and D. Gallwitz. 1989. Sequence, expression and mutational analysis of BAF1, a transcriptional activator and ARS1-binding protein of the yeast Saccharomyces cerevisiae. EMBO J. 8:4265–4272.
  • Halfter, H., U. Muller, E.-L. Winnacker, and D. Gallwitz. 1989. Isolation and DNA-binding characteristics of a protein involved in transcription activation of two divergently transcribed, essential yeast genes. EMBO J. 8:3029–3037.
  • Hinnebusch, A. G., and G. R. Fink. 1983. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:5374–5378.
  • Holmberg, S.%% 1991. Evidence for positive regulation of serine and threonine catabolism in Saccharomyces cerevisiae, p. 191. Abstr. GSA Meet. Yeast Genet. Mol. Biol., San Francisco, Calif. Genetics Society of America, Bethesda, Md..
  • Holmberg, S., and J. G. L. Petersen. 1988. Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 13:207–217.
  • Ignjatovic, M. W. 1990. Cand. Scient. thesis. University of Copenhagen, Copenhagen, Denmark.
  • Jauniaux, J.-C., and M. Grenson. 1990. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur. J. Biochem. 190:39–44.
  • Lorch, Y., and R. D. Kornberg. 1985. A region flanking the GAL7 gene and a binding site for GAL4 protein as upstream activating sequences in yeast. J. Mol. Biol. 186:821–824.
  • Luche, R. M., W. C. Smart, and T. G. Cooper. 1992. Purification of the heteromeric protein binding to the URS1 transcriptional repression site in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89:7412–7416.
  • Machida, M., H. Uemura, Y. Jigami, and H. Tanaka. 1988. The protein factor which binds to the upstream activating sequence of Saccharomyces cerevisiae ENOl gene. Nucleic Acids Res. 16:1407–1422.
  • Martín-Rendón, E. (University of Seville). 1991. Personal communication.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Nagawa, F., and G. R. Fink. 1985. The relationship between the “TATA” sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82:8557–8561.
  • Nielsen, T. L., S. Holmberg, and J. G. L. Petersen. 1990. Regulated overproduction and secretion of yeast carboxypepti-dase Y. Appl. Microbiol. Biotechnol. 33:307–312.
  • Petersen, J. G. L., M. C. Kielland-Brandt, T. Nilsson-Tillgren, C. Bornæs, and S. Holmberg. 1988. Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae. Genetics 119:527–534.
  • Pratorius, M. 1990. Cand. Scient. thesis. University of Copenhagen, Copenhagen, Denmark.
  • Rai, R., F. Genbauffe, H. Z. Lea, and T. G. Cooper. 1987. Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae. J. Bacteriol. 169:3521–3524.
  • Ramos, F., and J.-M. Wiame. 1982. Occurrence of a catabolic L-serine (L-threonine) deaminase in Saccharomyces cerevisiae. Eur. J. Biochem. 123:571–576.
  • Remade, J. E., and S. Holmberg. 1992. A REBl-binding site is required for GCN4-independent ILV1 basal level transcription and can be functionally replaced by an ABFl-binding site. Mol. Cell. Biol. 12:5516–5526.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
  • Shore, D., and K. Nasmyth. 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732.
  • Stanway, C., J. Mellor, J. E. Ogden, A. J. Kingsman, and S. M. Kingsman. 1987. The UAS of the yeast PGK gene contains functionally distinct domains. Nucleic Acids Res. 15:6855–6873.
  • Struhl, K. 1984. Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence. Proc. Natl. Acad. Sci. USA 81:7865–7869.
  • Sumrada, R. A., and T. G. Cooper. 1982. Isolation of the CAR1 gene from Saccharomyces cerevisiae and analysis of its expression. Mol. Cell. Biol. 2:1514–1523.
  • Sumrada, R. A., and T. G. Cooper. 1987. Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc. Natl. Acad. Sci. USA 84:3997–4001.
  • Verma, R. S., T. V. G. Rao, and R. Prasad. 1984. An inducible, specific and derepressible transport of L-serine in Saccharomyces cerevisiae. Biochim. Biophys. Acta 778:289–297.
  • Vogel, K., W. Horz, and A. Hinnen. 1989. The two positively acting regulatory proteins PH02 and PH04 interact with PH05 upstream activation regions. Mol. Cell. Biol. 9:2050–2057.
  • Wang, S.-.S, and M. C. Brandriss. 1986. Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene. Mol. Cell. Biol. 6:2638–2645.
  • Yoo, H.-S., F. S. Genbauffe, and T. G. Cooper. 1985. Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol. Cell. Biol. 5:2279–2288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.