2
Views
3
CrossRef citations to date
0
Altmetric
Gene Expression

AU-Rich Intronic Elements Affect Pre-mRNA 5′ Splice Site Selection in Drosophila melanogaster

&
Pages 7689-7697 | Received 10 May 1993, Accepted 08 Sep 1993, Published online: 31 Mar 2023

References

  • Aroian, R. V., A. D. Levy, M. Kogo, Y. Ohshima, J. M. Kramer, and P. W. Sternberg. 1993. Splicing in Caenorhabditis elegans does not require an AG at the 3′ splice acceptor site. Mol. Cell. Biol. 13:626–637.
  • Black, D. L., B. Chabot, and J. A. Steitz. 1985. U2 as well as U1 small nuclear ribonucleoproteins are involved in pre-messenger RNA splicing. Cell 42:737–750.
  • Cherbas, L., K. Lee, and P. Cherbas. 1991. Identification of ecdysone response elements by analysis of the Drosophila Eip28/29 gene. Genes Dev. 5:120–131.
  • Conrad, R., R. F. Liou, and T. Blumenthal. 1993. Functional analysis of a C. elegans trans-splice acceptor. Nucleic Acids Res. 21:913–919.
  • Conrad, R., R. F. Liou, and T. Blumenthal. 1993. Conversion of a trans-spliced C. elegans gene into a conventional gene by introduction of a splice donor site. EMBO J. 12:1249–1255.
  • Csank, C., F. M. Taylor, and D. W. Martindale. 1990. Nuclear pre-mRNA introns: analysis and comparison of intron sequences from Tetrahymena thermophila and other eukaryotes. Nucleic Acids Res. 18:5133–5141.
  • Fluhr, R., P. Moses, G. Morelli, G. Coruzzi, and N.-H. Chua. 1986. Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts. EMBO J. 5:2063–2071.
  • Goodall, G. J., and W. Filipowicz. 1989. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58:473–483.
  • Goodall, G. J., and W. Filipowicz. 1990. The minimum functional length of pre-mRNA introns in monocots and dicots. Plant Mol. Biol. 14:727–733.
  • Goodall, G. J., and W. Filipowicz. 1991. Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J. 10:2635–2644.
  • Goodall, G. J., T. Kiss, and W. Filipowicz. 1991. Nuclear RNA splicing and small nuclear RNAs and their genes in higher plants. Oxf. Surv. Plant Mol. Cell Biol. 7:255–296.
  • Green, M. R.%% 1991. Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu. Rev. Cell Biol. 7:559–599.
  • Guo, M., P. C. H. Lo, and S. M. Mount. 1993. Species-specific signals for the splicing of a short Drosophila intron in vitro. Mol. Cell. Biol. 13:1104–1118.
  • Guthrie, C., and B. Patterson. 1988. Spliceosomal snRNAs. Annu. Rev. Genet. 22:387–419.
  • Hanley-Bowdoin, L., J. S. Elmer, and S. G. Rogers. 1988. Transient expression of heterologous RNAs using tomato golden mosaic virus. Nucleic Acids Res. 16:10511–10529.
  • Li, W., and J. E. Shaw. 1993. A variant transposable element in the nematode C. elegans could encode a novel protein. Nucleic Acids Res. 21:59–67.
  • Lou, H., A. J. McCullough, and M. A. Schuler. 1993. Expression of maize Adhl intron mutants in tobacco nuclei. Plant J. 3:393–403.
  • Lou, H., A. J. McCullough, and M. A. Schuler. 1993. 3′ splice site selection in dicot plant nuclei is position dependent. Mol. Cell. Biol. 13:4485–4493.
  • Luhrmann, R., B. Kastner, and M. Bach. 1990. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochem. Biophys. Acta 1087:265–292.
  • McCullough, A. J., H. Lou, and M. A. Schuler. 1991. In vivo analysis of plant pre-mRNA splicing using an autonomously replicating vector. Nucleic Acids Res. 19:3001–3009.
  • McCullough, A. J., H. Lou, and M. A. Schuler. 1993. Factors affecting authentic 5′ splice site selection in plant nuclei. Mol. Cell. Biol. 13:1323–1331.
  • McCullough, A. J., and M. A. Schuler. Unpublished data.
  • Moore, M., C. C Query, and P. Sharp. Splicing of precursors to messenger RNAs by the spliceosome. In R. Gesteland and J. Atkins (ed.), The RNA world, in press. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Mount, S. M., C. Burks, G. Hertz, G. D. Stormo, O. White, and C. Fields. 1992. Splicing signals in Drosophila:: intron size, information content, and consensus sequences. Nucleic Acids Res. 20:4255–4262.
  • Newman, A. J., and C. Norman. 1991. Mutations in yeast U5 snRNA alter the specificity of 5′ splice-site cleavage. Cell 65:115–123.
  • Newman, A. J., and C. Norman. 1992. U5 snRNA interacts with exon sequences at 5′ and 3′ splice sites. Cell 68:743–754.
  • Parker, R., P. G. Siliciano, and C. Guthrie. 1987. Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49:229–239.
  • Reich, C. I., R. W. VanHoy, G. L. Porter, and J. A. Wise. 1992. Mutations at the 3′ splice site can be suppressed by compensatory base changes in U1 snRNA in fission yeast. Cell 69:1159–1169.
  • Seraphin, B., L. Kretzner, and M. Rosbash. 1988. A U1 snRNA: pre-mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. EMBO J. 7:2533–2538.
  • Siliciano, P. G., and C. Guthrie. 1988. 5′ splice site selection in yeast: genetic alterations in base pairing with U1 reveal additional requirements. Genes Dev. 2:1258–1267.
  • Steitz, J. A., D. L. Black, V. Gerke, K. A. Parker, A. Kramer, D. Frendewey, and W. Keller. 1988. Functions of the abundant U-snRNPs, p. 115–154. In M. L. Birnstiel (ed.), Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin.
  • Vallette, F., E. Mege, A. Reiss, and M. Adesnik. 1989. Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 17:723–733.
  • Wassarman, D. A., and J. Steitz. 1992. Interactions of small nuclear RNA’s with precursor messenger RNA during in vitro splicing. Science 257:1918–1925.
  • Woolford, J. L.%% 1989. Nuclear pre-mRNA splicing in yeast. Yeast 5:439–457.
  • Wu, J., and J. L. Manley. 1989. Mammalian pre-mRNA branch site selection by U2 snRNP involves base pairing. Genes Dev. 3:1553–1561.
  • Zhuang, Y., and A. M. Weiner. 1986. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46:827–835.
  • Zhuang, Y., and A. M. Weiner. 1989. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes Dev. 3:1545–1552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.