0
Views
12
CrossRef citations to date
0
Altmetric
Gene Expression

Species-Specific Signals for the Splicing of a Short Drosophila Intron in Vitro

, &
Pages 1104-1118 | Received 03 Aug 1992, Accepted 25 Nov 1992, Published online: 01 Apr 2023

References

  • Adami, G., and J. R. Nevins. 1988. Splicing site selection dominates over poly(A) choice in RNA production from complex adenovirus transcription units. EMBO J. 7:2107–2116.
  • Barabino, S. L., B. J. Blencowe, U. Ryder, B. S. Sproat, and A. I. Lamond. 1990. Targeted snRNP depletion reveals an additional role for mammalian U1 snRNP in Spliceosome assembly. Cell 63:293–302.
  • Beggs, J. D., J. V. D Berg, A. V. Ooyen, and C. Weissman. 1980. Abnormal expression of a chromosomal rabbit β-globin gene in Saccharomyces cerevisiae. Nature (London) 283:835–840.
  • Bell, L. R., E. Μ. Maine, P. Schedi, and T. W. Cline. 1988. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55:1037–1046.
  • Bingham, P. M., and B. H. Judd. 1981. A copy of the copia transposable element is very tightly linked to the wα allele at the white locus of D. melanogaster. Cell 25:705–711.
  • Birchler, J. A., and J. C. Hiebert. 1989. Interaction of the Enhancer-of-white-apricot with transposable element alleles at the white locus in Drosophila melanogaster. Genetics 122:129–138.
  • Birchler, J. A., J. C. Hiebert, and L. Rabinow. 1989. Interaction of the mottler-of-white with transposable element alleles at the white locus in Drosophila melanogaster. Genes Dev. 3:73–84.
  • Black, D. L., B. Chabot, and J. A. Steitz. 1985. U2 as well as U1 small nuclear ribonucleoproteins are involved in pre-messenger RNA splicing. Cell 42:737–750.
  • Blumenthal, T., and J. Thomas. 1988. Cis and trans mRNA splicing in C. elegans. Trends Genet. 4:305–308.
  • Boggs, R. T., P. Gregor, S. Idriss, J. Belote, and Μ. McKeown. 1987. Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 50:739–747.
  • Chou, T., Z. Zachar, and P. Μ. Bingham. 1987. Developmental expression of a regulatory gene is programmed at the level of splicing. EMBO J. 7:4095–4104.
  • Dignam, J. D., R. Μ. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475.
  • Frendeway, D., and W. Keller. 1985. The stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42:355–367.
  • Ge, H., J. Noble, J. Colgan, and J. L. Manley. 1990. Polyoma virus small tumor antigen pre-mRNA splicing requires cooperation between two 3' splice sites. Proc. Natl. Acad. Sci. USA 87:3338–3342.
  • Gehring, W. J., and R. Paro. 1980. Isolation of a hybrid plasmid with homologous sequences to a transposing element of Drosophila. Cell 19:897–904.
  • Goodall, G. J., and W. Filopowicz. 1989. The AU-rich sequences present in the introns of plant nuclear ρre-mRNAs are required for splicing. Cell 58:473–483.
  • Goodall, G. J., and W. Filopowicz. 1991. Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J. 10:2635–2644.
  • Green, Μ. R. 1991. Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu. Rev. Cell Biol. 7:559–600.
  • Guthrie, C., and B. Patterson. 1988. Spliceosomal snRNAs. Annu. Rev. Genet. 22:387–419.
  • Harper, D. S., L. D. Fresco, and J. D. Keene. 1992. RNA binding specificity of a Drosophila snRNP protein that shares homology with mammalian U1-A and U2-B" proteins. Nucleic Acids Res. 20:3645–3650.
  • Hawkins, J. D. 1988. A survey on intron and exon lengths. Nucleic Acids Res. 16:9893–9905.
  • Haynes, S. R., D. Johnson, G. Raychaudhuri, and A. L. Beyer. 1991. The Drosophila Hrb87F gene encodes a new member of the A and B hnRNP proteins group. Nucleic Acids Res. 19:25–31.
  • Haynes, S. R., G. Raychaudhuri, and A. L. Beyer. 1990. The Drosophila Hrb98DE locus encodes four protein isoforms homologous to the A1 protein of mammalian heterogeneous nuclear ribonucleoprotein complexes. Mol. Cell. Biol. 10:316–323.
  • Inoue, T., and T. R. Cech. 1985. Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc. Natl. Acad. Sci. USA 82:648–652.
  • Jacquier, A., J. R. Rodriguez, and Μ. Rosbash. 1985. A quantitative analysis of the effects of 5' junction and TACTAAC box mutants and mutant combinations on yeast mRNA splicing. Cell 43:423–430.
  • Keller, E. B., and W. A. Noon. 1984. Intron splicing: a conserved internal signal in introns of animal pre-mRNAs. Proc. Natl. Acad. Sci. USA 81:7417–7420.
  • Keller, E. B., and W. A. Noon. 1985. Intron splicing: a conserved internal signal in introns of Drosophila pre-mRNAs. Nucleic Acids Res. 13:4971–4981.
  • Konarska, Μ. Μ., P. J. Grabowski, R. A. Padgett, and P. A. Sharp. 1985. Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. Nature (London) 313:552–557.
  • Krainer, A. R., T. Maniatis, B. Ruskin, and Μ. R. Green. 1984. Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36:993–1005.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Kurkulos, Μ. Unpublished data.
  • Kurkulos, Μ., J. Μ. Weinberg, Μ. E. Pepling, and S. Μ. Mount. 1991. Polyadenylation in copia requires unusually distant upstream sequences. Proc. Natl. Acad. Sci. USA 88:3038–3042.
  • Langford, C. J., and D. Gallwitz. 1983. Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts. Cell 33:7–19.
  • Leff, S. E., R. Μ. Evans, and Μ. G. Rosenfeld. 1987. Splice commitment dictates neuron-specific alternative RNA processing in calcitonin/CGRP gene expression. Cell 48:517–524.
  • Legrain, P., B. Séraphin, and Μ. Rosbash. 1988. Early commitment of yeast pre-mRNA to the Spliceosome pathway does not require U2 small nuclear ribonucleoprotein. Mol. Cell. Biol. 8:3755–3760.
  • Levis, R., P. Μ. Bingham, and G. Μ. Rubin. 1982. Physical map of the white locus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 79:564–568.
  • Levis, R., K. O’Hare, and G. Μ. Rubin. 1984. Effects of transposable element insertions on RNA encoded by the white gene of Drosophila melanogaster. Cell 38:471–481.
  • Levitt, N., D. Briggs, A. Gil, and N. J. Proudfoot. 1989. Definition of an efficient synthetic poly(A) site. Genes Dev. 3:1019–1025.
  • Lindsley, D. L., and G. G. Zimm. 1992. The genome of Drosophila melanogaster. Academic Press, New York.
  • Lo, P. C. H. Unpublished data.
  • Lo, P. C. H., and S. Μ. Mount. 1990. Drosophila melanogaster genes for U1 snRNA variants and their expression during development. Nucleic Acids Res. 18:6971–6979.
  • Mancebo, R., P. C. H Lo, and S. Μ. Mount. 1990. Structure and expression of the Drosophila melanogaster gene for the U1 small nuclear ribonucleoprotein particle 70K protein. Mol. Cell. Biol. 10:2492–2502.
  • Mattox, W., and B. S. Baker. 1991. Autoregulation of the splicing of transcripts from the transformer-2 gene of Drosophila. Genes Dev. 5:786–796.
  • Matunis, E. L., Μ. J. Matunis, and G. Dreyfuss. 1992. Characterization of the major hnRNP proteins from Drosophila melanogaster. J. Cell Biol. 116:257–269.
  • Matunis, Μ. J., E. L. Matunis, and G. Dreyftiss. 1992. Isolation of hnRNP complexes from Drosophila melanogaster. J. Cell Biol. 116:245–255.
  • Mayeda, A., A. Μ. Zahler, A. R. Krainer, and Μ. B. Roth. 1992. Two members of a conserved family of nuclear phosphoproteins are involved in general and alternative splicing. Proc. Natl. Acad. Sci. USA 89:1301–1304.
  • Mount, S. Μ., C. Burks, G. Hertz, G. D. Stormo, O. White, and C. Fields. 1992. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 20:4255–4262.
  • Mount, S. Μ., Μ. Μ. Green, and G. Μ. Rubin. 1988. Partial revertants of the transposable element-associated Suppressible allele white-apricot in Drosophila melanogaster: structure and responsiveness to genetic modifiers. Genetics 118:221–234.
  • Mount, S. Μ., I. Petterson, Μ. Hinterberger, A. Karmas, and J. A. Steitz. 1983. The U1 small nuclear RNA-protein complex selectively binds a 5' splice site in vitro. Cell 33:509–518.
  • Mount, S. Μ., and J. A. Steitz. 1981. Sequence of U1 RNA from Drosophila melanogaster: implications for U1 secondary structure and possible involvement in splicing. Nucleic Acids Res. 9:6351–6368.
  • Nagoshi, R. N., Μ. McKeown, K. C. Burtis, J. Μ. Belote, and B. S. Baker. 1988. The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster. Cell 53:229–236.
  • Nelson, K. K., and Μ. R. Green. 1989. Mammalian U2 snRNP has a sequence-specific RNA-binding activity. Genes Dev. 3:1562–1571.
  • Newman, A. J., R.-J. Lin, S.-C. Cheng, and J. Abelson. 1985. Molecular consequences of specific intron mutations on yeast mRNA splicing in vivo and in vitro. Cell 42:335–344.
  • Noble, J. C. S., H. Ge, Μ. Chaudhuri, and J. L. Manley. 1989. Factor interactions with the simian virus 40 early pre-mRNA influence branch site selection and alternative splicing. Mol. Cell. Biol. 9:2007–2017.
  • Noble, J. C. S., Z. Pan, C. Prives, and J. L. Manley. 1987. Splicing of SV40 early pre-mRNA to large T and small t mRNA utilizes different patterns of lariat branch sites. Cell 50:227–236.
  • Noble, J. C. S., C. Prives, and J. L. Manley. 1986. In vitro splicing of simian virus 40 early pre-mRNA. Nucleic Acids Res. 14:1219–1235.
  • Ogg, S. C., P. Anderson, and Μ. P. Wickens. 1990. Splicing of a C. elegans myosin pre-mRNA in a human nuclear extract. Nucleic Acids Res. 18:143–149.
  • O’Hare, K., C. Murphy, R. Levis, and G. Μ. Rubin. 1984. DNA sequence of the white locus of Drosophila melanogaster. J. Mol. Biol. 180:437–455.
  • Parker, R., and C. Guthrie. 1985. A point mutation in the conserved hexanucleotide at a yeast 5' splice junction uncouples recognition, cleavage and ligation. Cell 41:107–118.
  • Parker, R., P. G. Siliciano, and C. Guthrie. 1987. Recognition of the TACTAAC box during mRNA splicing in yeast involves base-pairing to the U2-like snRNA. Cell 49:229–239.
  • Peng, X., and S. Μ. Mount. 1990. Characterization of Enhancer-of-white-apricot in Drosophila melanogaster. Genetics 136:1061–1069.
  • Pepling, Μ. E., and S. Μ. Mount. 1990. Sequence of a cDNA from the Drosophila melanogaster white gene. Nucleic Acids Res. 18:1633.
  • Pirrotta, V., and C. Brockl. 1984. Transcription of the Drosophila white locus and some of its mutants. EMBO J. 3:563–568.
  • Rabinow, L., and J. A. Birchler. 1989. A dosage-sensitive modifier of the retrotransposon-induced alleles of the Drosophila white locus. EMBO J. 8:879–889.
  • Reed, R., and T. Maniatis. 1985. Intron sequences involved in lariat formation during pre-mRNA splicing. Cell 41:95–105.
  • Reed, R., and T. Maniatis. 1986. A role for exon sequences and splice site proximity in splice site selection. Cell 46:681–690.
  • Reed, R., and T. Maniatis. 1988. The role of mammalian branchpoint sequences in pre-mRNA splicing. Genes Dev. 2:1268–1276.
  • Rio, D. C. 1988. Accurate and efficient pre-mRNA splicing in Drosophila cell-free extracts. Proc. Natl. Acad. Sci. USA 85:2904–2909.
  • Ruby, S. W., and J. Abelson. 1988. An early hierarchic role of U1 small nuclear ribonucleoprotein in Spliceosome assembly. Science 242:79–85.
  • Ruskin, B., J. Μ. Greene, and Μ. R. Green. 1985. Cryptic branch point activation allows accurate in vitro splicing of human β-globin intron mutants. Cell 52:207–219.
  • Ruskin, B., A. R. Krainer, T. Maniatis, and Μ. R. Green. 1984. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38:317–331.
  • Ruskin, B., P. D. Zamore, and Μ. R. Green. 1988. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 52:207–219.
  • Saiki, R. K., D. H. Gelfand, S. Stoffel, S. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Ehrlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable polymerase. Science 239:487–491.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulsen. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Senapathy, P., Μ. B. Shapiro, and N. L. Harris. 1990. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to the human genome project. Methods Enzymol. 183:252–278.
  • Séraphin, B., L. Kretzner, and Μ. Rosbash. 1988. A U1 snRNA: pre-mRNA base pairing interaction is required early in yeast Spliceosome assembly but does not uniques define the 5' splice site. EMBO J. 7:2533–2538.
  • Séraphin, B., and Μ. Rosbash. 1989. Mutational analysis of the interactions between U1 small nuclear RNA and pre-mRNA of yeast. Gene 82:145–151.
  • Siebel, C. W., and D. C. Rio. 1990. Regulated splicing of the Drosophila P transposable element third intron in vitro: somatic repression. Science 248:1200–1208.
  • Siliciano, P. G., and C. Guthrie. 1988. 5' splice site selection in yeast: genetic alterations in base-pairing with U1 reveal additional requirements. Genes Dev. 2:1258–1267.
  • Smith, C. W. J., J. G. Patton, and B. Nadal-Ginard. 1989. Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23:527–577.
  • Tseng, J. C., S. Zollman, A. C. Chain, and F. A. Laski. 1991. Splicing of the Drosophila P element ORF2-ORF3 intron is inhibited in a human cell extract. Mech. Dev. 35:65–72.
  • von Halle, E. S. 1969. Pursuing the Enhancer-of-white-apricot. Drosophila Inf. Serv. 44:119.
  • Weibauer, K., J.-J. Herrero, and W. Filopowicz. 1988. Nuclear pre-mRNA processing in plants: distinct modes of 3' splice site selection in plants and animals. Mol. Cell. Biol. 8:2042–2051.
  • Wieringa, B., E. Hofer, and C. Weissmann. 1984. A minimal intron length but no specific internal sequence is required for splicing the large rabbit β-globin intron. Cell 37:915–925.
  • Wu, J., and J. L. Manley. 1989. Mammalian pre-mRNA branch site selection by U2 snRNP involves base pairing. Genes Dev. 3:1553–1561.
  • Zachar, Z., T. B. Chou, and P. Μ. Bingham. 1987. Evidence that a regulatory gene autoregulates splicing of its transcript. EMBO J. 6:4105–4111.
  • Zachar, Z., D. Davidson, D. Garza, and P. Μ. Bingham. 1985. A detailed developmental and structural study of the transcriptional effects of insertion of the copia transposon into the white locus of Drosophila melanogaster. Genetics 111:495–515.
  • Zamore, P. D., and Μ. R. Green. 1991. Biochemical characterization of U2 snRNP auxiliary factor: an essential pre-mRNA splicing factor with a novel intramolecular distribution. EMBO J. 10:207–214.
  • Zeitlin, S., and A. Efstratiatis. 1984. In vivo splicing products of the rabbit β-globin gene. Cell 39:589–602.
  • Zhuang, Y., A. Μ. Goldstein, and A. Μ. Weiner. 1989. UACU AAC is the preferred branch site for mammalian mRNA splicing. Proc. Natl. Acad. Sci. USA 86:2752–2756.
  • Zhuang, Y., and A. Μ. Weiner. 1986. A compensatory base change in U1 snRNA suppresses a 5' splice site mutation. Cell 46:827–835.
  • Zhuang, Y., and A. Μ. Weiner. 1989. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes Dev. 3:1545–1552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.