0
Views
24
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

TSF3, a Global Regulatory Protein That Silences Transcription of Yeast GAL Genes, Also Mediates Repression by α2 Repressor and Is Identical to SIN4

, , , , &
Pages 831-840 | Received 10 Sep 1992, Accepted 30 Oct 1992, Published online: 01 Apr 2023

References

  • Berg, J. Μ. 1986. Potential metal-binding domains in nucleic acid binding proteins. Science 232:485–487.
  • Burke, R. L., P. Tekamp-Olson, and R. Najarian. 1983. The isolation, characterization and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. J. Biol. Chem. 258:2193–2201.
  • Carlson, M., and D. Bostein. 1982. Two differentially regulated mRNAs with different 5' ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Cavener, D. R., and S. C. Ray. 1991. Eukaryotic start and stop translation sites. Nucleic Acids Res. 19:3185–3192.
  • Chen, S., R. W. West, Jr., S. Johnson, and H. Gans. 1991. Regulatory genes required for transcriptional silencing in yeast: genetic mapping, cloning, and sequencing of GAL22. Abstr. 24, Yeast Genetics and Molecular Biology Meeting, San Francisco, Calif.
  • Chen, S., R. W. West, Jr., S. L. Johnson, H. Gans, and J. Ma. TSF1 to TSF6, required for transcriptional silencing of the yeast GAL genes, are global regulatory genes. Submitted for publication.
  • Curran, T., C. Abate, D. R. Cohen, P. F. Macgregor, F. J. Rauscher, J. L. Sonnenberg, J. A. Connor, and J. I. Morgan. 1990. Inducible proto-oncogene transcription factors: third messengers in the brain? Cold Spring Harbor Symp. Quant. Biol. 55:225–234.
  • Denis, C. L., and T. Malvar. 1990. The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression. Genetics 124:283–291.
  • Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • Dobson, Μ. J., Μ. F. Tuite, N. A. Roberts, A. J. Kingsman, and S. Μ. Kingsman. 1982. Conservation of high efficiency promoters in Saccharomyces cerevisiae. Nucleic Acids Res. 10:2625–2637.
  • Durrin, L. K., R. K. Mann, and Μ. Grunstein. 1992. Nucleosome loss activates CUP1 and HIS3 promoters to fully induced levels in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1621–1629.
  • Fassler, J. S., and F. Winston. 1988. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118:203–212.
  • Fassler, J. S., and F. Winston. 1989. The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription. Mol. Cell. Biol. 9:5602–5609.
  • Finley, R. L., Jr., S. Chen, J. Ma, P. Byrne, and R. W. West, Jr. 1990. Opposing regulatory functions of positive and negative elements in UASg control transcription of the yeast GAL genes. Mol. Cell. Biol. 10:5663–5670.
  • Finley, R. L., Jr., and R. W. West, Jr. 1989. Differential repression of GAL4 and adjacent transcription activators by operators in the yeast GAL upstream activating sequence. Mol. Cell. Biol. 9:4282–4290.
  • Flick, J. S., and Μ. Johnston. 1992. Analysis of URSG-mediated glucose repression of the GAL1 promoter of Saccharomyces cerevisiae. Genetics 130:295–304.
  • Goebl, Μ. Personal communication.
  • Goebl, Μ., and Μ. Yanagida. 1991. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem. Sci. 16:173–177.
  • Hall, Μ. N., C. Craik, and Y. Hiraoka. 1990. Homeodomain of yeast repressor α2 contains a nuclear localization signal. Proc. Natl. Acad. Sci. USA 87:6954–6958.
  • Hall, Μ. N., L. Hereford, and I. Herskowitz. 1984. Targeting of E. coli β-galactosidase to the nucleus in yeast. Cell 36:1057–1065.
  • Herskowitz, I. 1989. A regulatory hierarchy for cell specialization in yeast. Nature (London) 342:749–757.
  • Hill, J. E., A. Μ. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Himmelfarb, H. J., J. Pearlberg, D. H. Last, and Μ. Ptashne. 1990. GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators. Cell 63:1299–1309.
  • Hyman, L. E., S. H. Seiler, J. Whoriskey, and C. L. Moore. 1991. Point mutations upstream of the yeast ADH2 poly(A) site significantly reduce the efficiency of 3'-end formation. Mol. Cell. Biol. 11:2004–2012.
  • Irniger, S., C. Μ. Egli, and G. H. Braus. 1991. Different classes of polyadenylation sites in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3060–3069.
  • Jiang, Y. W., and D. J. Stillman. 1992. Involvement of a global transcriptional regulator, the SIN4/TSF3 gene, in the chromatin structure of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4503–4514.
  • Johnson, A. D., and I. Herskowitz. 1985. A repressor (M47α2 product) and its operator control expression of a set of cell type specific genes in yeast. Cell 42:237–247.
  • Keleher, C. A., C. Goutte, and A. D. Johnson. 1988. The yeast cell-type-specific repressor α2 acts cooperatively with a noncell-type-specific protein. Cell 53:927–936.
  • Keleher, C. A., S. Passmore, and A. D. Johnson. 1989. Yeast repressor α2 binds to its operator cooperatively with yeast protein Mcm1. Mol. Cell. Biol. 9:5228–5230.
  • Keleher, C. A., Μ. J. Redd, J. Schultz, Μ. Carlson, and A. D. Johnson. 1992. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719.
  • Kemp, B. E., and R. B. Pearson. 1990. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15:342–346.
  • Kidd, S., Μ. R. Kelley, and Μ. W. Young. 1986. Sequence of the Notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol. Cell. Biol. 6:3094–3108.
  • Klapholz, S., and R. E. Esposito. 1982. A new mapping method employing a meiotic rec mutant of yeast. Genetics 100:387–412.
  • Kruger, W., and I. Herskowitz. 1991. A negative regulator of HO transcription. SIN1 (SPT2), is a nonspecific DNA-binding protein related to HMG1. Mol. Cell. Biol. 11:4135–4146.
  • Kukuruzinska, Μ. A., Μ. L. E Gergh, and B. J. Jackson. 1987. Protein glycosylation in yeast. Annu. Rev. Biochem. 56:915–944.
  • Lamphier, Μ. S., and Μ. Ptashne. 1992. Multiple mechanisms of glucose repression of the yeast GAL1 gene. Proc. Natl. Acad. Sci. USA 89:5922–5926.
  • Martin, C., and R. Young. 1989. KEX2 mutations suppress RNA polymerase II mutants and alter the temperature range of yeast cell growth. Mol. Cell. Biol. 9:2341–2349.
  • Mukai, Y., S. Harashima, and Y. Oshima. 1991. AAR1/TUP1 protein, with a structure similar to that of the β subunit of G proteins, is required for al-α2 and α2 repression in cell-type control of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3773–3779.
  • Nasmyth, K∙, and D. Shore. 1987. Transcriptional regulation in the yeast life cycle. Science 237:1162–1170.
  • Nasmyth, K., D. Stillman, and D. Kipling. 1987. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48:579–587.
  • Nehlin, J. O., Μ. Carlberg, and H. Ronne. 1991. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10:3373–3377.
  • Neigeborn, L., J. L. Celenza, and Μ. Carlson. 1987. SSN20 is an essential gene with mutant alleles that suppress defects in SUC2 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:672–678.
  • Nishizawa, Μ., Y. Suzuki, Y. Nogi, K. Matsumoto, and T. Fukasawa. 1990. Yeast Gal11 protein mediates the transcriptional activation signal of two different transacting factors, Gal4 and general regulatory factor I/repressor/activator site binding protein 1/translation upstream factor. Proc. Natl. Acad. Sci. USA 87:5373–5377.
  • Oshima, Y. 1991. Impact of the Douglas-Hawthorne model as a paradigm for elucidating cellular regulatory mechanisms in fungi. Genetics 128:195–201.
  • Passmore, S., G. T. Maine, R. Elbe, C. Christ, and B.-K. Tye. 1988. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATα cells. J. Mol. Biol. 204:593–606.
  • Perkins, D. D. 1949. Biochemical mutants in the smut fungus Ustilago maydis. Genetics 34:607–626.
  • Proudfoot, N. 1990. Poly (A) signals. Cell 64:671–674.
  • Ptashne, Μ. 1988. How eukaryotic transcriptional activators work. Nature (London) 335:683–689.
  • Roeder, G. S., C. Beard, Μ. Smith, and S. Keranen. 1985. Isolation and characterization of the SPT2 gene, a negative regulator of Ty-Controlled yeast gene expression. Mol. Cell. Biol. 5:1543–1553.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Schultz, J., and Μ. Carlson. 1987. Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3637–3645.
  • Schultz, J., L. Marshall-Carlson, and Μ. Carlson. 1990. The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of Saccharomyces cerevisiae. Mol. Cell. Biol. 10:4744–4756.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shimizu, M., S. Y. Roth, C. Szent-Gyorgyi, and R. T. Simpson. 1991. Nucleosomes are positioned with base pair precision adjacent to the α2 operator in Saccharomyces cerevisiae. EMBO J. 10:3033–3041.
  • Sikorski, R. S., Μ. S. Boguski, Μ. Goebl, and P. Hieter. 1990. A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307–317.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strain designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sternberg, P. W., Μ. J. Stern, I. Clark, and I. Herskowitz. 1987. Activation of the yeast HO gene by release from multiple negative controls. Cell 48:567–577.
  • Stillman, D. Personal communication.
  • Suzuki, Y., Y. Nogi, A. Akio, and T. Fukasawa. 1988. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4991–4999.
  • Swanson, Μ. S., Μ. Carlson, and F. Winston. 1990. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol. Cell. Biol. 10:4935–4941.
  • Swanson, Μ. S., E. A. Malone, and F. Winston. 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11:3009–3019.
  • Wang, H., I. Clark, P. R. Nicholson, I. Herskowitz, and D. J. Stillman. 1990. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol. Cell. Biol. 10:5927–5936.
  • West, R. W., Jr., S. Chen, H. Putz, H. Butler, and Μ. Banerjee. 1987. GAL1-GAL10 divergent promoter region of Saccharomyces cerevisiae contains negative control elements in addition to functionally separate and possibly overlapping upstream activating sequences. Genes Dev. 1:1118–1131.
  • Zaret, K. S., and F. Sherman. 1982. DNA sequence required for efficient transcription termination in yeast. Cell 28:563–573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.