4
Views
15
CrossRef citations to date
0
Altmetric
Cell Growth and Development

SH1 Domain Autophosphorylation of P210 BCR/ABL Is Required for Transformation but Not Growth Factor Independence

, , &
Pages 1728-1736 | Received 02 Jul 1992, Accepted 11 Dec 1992, Published online: 31 Mar 2023

References

  • Anderson, D., C. A. Koch, L. Grey, C. Ellis, M. F. Moran, and T. Pawson. 1990. Binding of SH2 domains of phospholipase C-gamma-I, GAP, and Src to activated growth factor receptors. Science 250:979–982.
  • Clark, S. S., J. McLaughlin, W. M. Crist, R. Champlin, and O. N. Witte. 1987. Unique forms of the Abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science 235:85–88.
  • Cook, D. W., B. Fazekas de St. Groth, J. F. A. P. Miller, R. MacDonald, and R. Gabathuler. 1987. Abelson virus transformation of an interleukin 2-dependent antigen-specific T-cell line. Mol. Cell. Biol. 7:2631–2635.
  • Cook, W., D. Metcalf, N. Nicola, A. Burgess, and F. Walker. 1985. Malignant transformation of a growth factor dependent myeloid cell line by Abelson virus without evidence for an autocrine mechanism. Cell 41:685–693.
  • Coughlin, S. R., J. A. Escobedo, and L. T. Williams. 1989. Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science 243:1191–1194.
  • Cross, F. R., and H. Hanafusa. 1983. Local mutagenesis of Rous sarcoma virus: the major sites of tyrosine and serine phosphorylation of p60Src are dispensable for transformation. Cell 34:597–607.
  • Daley, G. Q., and D. Baltimore. 1988. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific p210Bcr/Abl protein. Proc. Natl. Acad. Sci. USA 85:9312–9316.
  • Davis, R. L., J. B. Konopka, and O. N. Witte. 1985. Activation of the c-Abl oncogene by viral transduction or chromosomal translocation generates altered c-Abl proteins with similar in vitro kinase properties. Mol. Cell. Biol. 5:204–213.
  • de Thé, H., C. Lavau, A. Marchio, C. Chomienne, L. Degos, and A. Dejean. 1991. The PML-RARα fusion MRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675–684.
  • Diekmann, D., S. Brill, M. D. Garrett, N. Totty, J. Hsuan, C. Monfries, C. Hall, L. Lim, and A. Hall. 1991. Bcr encodes a GTPase activating protein for P21Rac. Nature (London) 351:400–402.
  • Ellis, C., X. Liu, D. Anderson, N. Abraham, A. Veillette, and T. Pawson. 1991. Tyrosine phosphorylation of GAP and GAP- associated proteins in lymphoid and fibroblast cells expressing Lck. Oncogene 6:895–901.
  • Ellis, L., E. Clauser, D. O. Morgan, M. Edery, R. A. Roth, and W. J. Rutter. 1986. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell 45:721–732.
  • Escobedo, J. A., D. R. Kaplan, W. M. Kavanaugh, C. W. Turck, and L. T. Williams. 1991. A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol. Cell. Biol. 11:1125–1132.
  • Escobedo, J. A., and L. T. Williams. 1988. A PDGF receptor domain essential for mitogenesis but not for many other responses to PDGF. Nature (London) 335:85–87.
  • Fantl, W. J., J. A. Escobedo, G. A. Martin, C. W. Turck, M. del Rosario, F. McCormick, and L. T. Williams. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69:413–423.
  • Goddard, A. D., J. Borrow, P. S. Freemont, and E. Solomon. 1991. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254:1371–1374.
  • Groffen, J., J. R. Stephenson, N. Heisterkamp, A. de Klein, C. R. Bartram, and G. Grosveld. 1984. Philadelphia chromosomal breakpoints are clustered within a limited region, Bcr, on chromosome 22. Cell 36:93–99.
  • Hanks, S. K., A. M. Quinn, and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52.
  • Hariharan, I. K., J. M. Adams, and S. Cory. 1988. BCR/ABL oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res. 3:387–399.
  • Henkemeyer, M., S. R. West, F. B. Gertler, and F. M. Hoffmann. 1990. A novel tyrosine kinase-independent function of Drosophila abl correlates with proper subcellular localization. Cell 63:949–960.
  • Honegger, A., T. J. Dull, D. Szapary, A. Komoriya, R. Kris, A. Ullrich, and J. Schlessinger. 1988. Kinetic parameters of the protein tyrosine kinase activity of EGF-receptor mutants with individually altered autophosphorylation sites. EMBO J. 7:3053–3060.
  • Kakizuka, A., W. H. J Miller, K. Umesono, R. P. J Warrell, S. R. Frankel, V. V. V. S. Murty, E. Dmitrovsky, and R. M. Evans. 1991. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66:663–674.
  • Kamps, M. P., C. Murre, X. Sun, and D. Baltimore. 1990. A new homeobox gene contributes the DNA binding domain of the t(l;19) translocation protein in pre-B ALL. Cell 60:547–555.
  • Kashishian, A., A. Kazlauskas, and J. A. Cooper. 1992. Phosphorylation sites in the PDGF receptor with different specifici-ties for binding GAP and PI3 kinase in vivo. EMBO J. 11:1373–1382.
  • Kmiecik, T. E., P. J. Johnson, and D. Shalloway. 1988. Regulation by the autophosphorylation site in overexpressed pp60c-src. Mol. Cell. Biol. 8:4541–4546.
  • Kmiecik, T. E., and D. Shalloway. 1987. Activation and suppression of Pp60c-Src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49:65–73.
  • Koch, C. A., D. Anderson, M. F. Moran, C. Ellis, and T. Pawson. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674.
  • Konopka, J. B., S. M. Watanabe, and O. N. Witte. 1984. An alteration of the human C-Abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37:1035–1042.
  • Konopka, J. B., and O. N. Witte. 1985. Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol. Cell. Biol. 5:3116–3123.
  • Kurzrock, R., J. Gutterman, and M. Talpaz. 1988. The molecular genetics of Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 319:990–998.
  • Lugo, T., and O. N. Witte. 1989. The BCR/ABL oncogene transforms rat-1 cells and cooperates with v-myc. Mol. Cell. Biol. 9:1263–1270.
  • Luo, K., T. R. Hurley, and B. M. Sefton. 1991. Cyanogen bromide cleavage and proteolytic peptide mapping of proteins immobilized to membranes. Methods Enzymol. 201:149–152.
  • Margolis, B., N. Li, A. Koch, M. Mohammadi, D. R. Hurwitz, A. Zilberstein, A. Ullrich, T. Pawson, and J. Schlessinger. 1990. The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-gamma. EMBO J. 9:4375–4380.
  • Maru, Y. M., and O. N. Witte. 1991. The BCR gene encodes a novel serine/threonine kinase activity within a single exon. Cell 67:459–468.
  • Mathey-Prevot, B., G. Nabel, R. Palacios, and D. Baltimore. 1986. Abelson murine leukemia virus abrogation of interleukin 3 dependence in a lymphoid cell line. Mol. Cell. Biol. 6:4133–4135.
  • Matsuda, M., B. J. Mayer, and H. Hanafusa. 1991. Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins. Mol. Cell. Biol. 11:1607–1613.
  • Mayer, B. J., P. K. Jackson, and D. Baltimore. 1991. The noncatalytic Src homology region 2 segment of Abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc. Natl. Acad. Sci. USA 88:627–631.
  • McLaughlin, J., E. Chianese, and O. N. Witte. 1987. In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc. Natl. Acad. Sci. USA 84:6558–6562.
  • McWhirter, J. R., and J. Y. J. Wang. 1991. Activation of tyrosine kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol. Cell. Biol. 11:1553–1565.
  • Meckling-Hansen, K., R. Nelson, P. Branton, and T. Pawson. 1987. Enzymatic activation of Fujinami sarcoma virus Gag-Fps transforming proteins by autophosphorylation at tyrosine. EMBO J. 6:659–666.
  • Metz, T., and T. Graf. 1991. Fusion of the nuclear oncoproteins V-Myb and V-Ets is required for the leukemogenicity of E26 virus. Cell 66:95–105.
  • Mohammadi, M., C. A. Dionne, W. Li, N. Li, T. Spivak, A. M. Honegger, M. Jaye, and J. Schlessinger. 1992. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature (London) 358:681–684.
  • Moran, M. F., A. C. Koch, D. Anderson, C. Ellis, L. England, G. S. Martin, and T. Pawson. 1990. Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl. Acad. Sci. USA 87:8622–8626.
  • Muller, A. J., J. C. Young, A. M. Pendergast, M. Pondel, D. R. Liftman, and O. N. Witte. 1991. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol. Cell. Biol. 11:1785–1792.
  • Muller, A. J., A. M. Pendergast, M. H. Havlik, L. Puil, T. Pawson, and O. N. Witte. 1992. A limited set of SH2 domains binds BCR through a high-affinity phosphotyrosine-independent interaction. Mol. Cell. Biol. 12:5087–5093.
  • Naldini, L., E. Vigna, R. Ferracini, P. Longati, L. Gandino, M. Prat, and P. M. Comoglio. 1991. The tyrosine kinase encoded by the MET proto-oncogene is activated by autophosphorylation. Mol. Cell. Biol. 11:1793–1803.
  • Nourse, J., J. D. Mellentin, N. Galili, J. Wilkinson, E. Stan-bridge, S. D. Smith, and M. L. Cleary. 1990. Chromosomal translocation t(l;19) results in synthesis of a homeobox fusion MRNA that codes for a potential chimeric transcription factor. Cell 60:535–545.
  • Pawson, T. 1988. Non-catalytic domains of cytoplasmic protein- tyrosine kinases: regulatory elements in signal transduction. Oncogene 3:491–495.
  • Pawson, T., and G. D. Gish. 1992. SH2 and SH3 domains: from structure to function. Cell 71:359–362.
  • Pendergast, A. M., A. J. Muller, M. H. Havlik, R. Clark, F. McCormick, and O. N. Witte. 1991. Evidence for regulation of the ABL tyrosine kinase by a cellular inhibitor. Proc. Natl. Acad. Sci. USA 88:5927–5931.
  • Pendergast, A. M., A. J. Muller, M. H. Havlik, Y. Maru, and O. N. Witte. 1991. BCR sequences essential for transformation by the BCR/ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 66:161–171.
  • Peters, K. G., J. Marie, E. Wilson, H. E. Ives, J. Escobedo, M. Del Rosario, D. Mirda, and L. T. Williams. 1992. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature (London) 358:678–681.
  • Pierce, J., P. DiFiore, S. Aaronson, N. Potter, J. Humphrey, A. Scott, and J. Ihle. 1985. Neoplastic transformation of mast cells by Abelson MuLV: abrogation of IL-3 dependence by a nonautocrine mechanism. Cell 41:677–683.
  • Piwnica-Worms, H., K. B. Saunders, T. M. Roberts, A. E. Smith, and S. H. Cheng. 1987. Tyrosine phosphorylation regu-lates the biochemical and biological properties of Pp60C-Src. Cell 49:75–82.
  • Reedijk, M., X. Liu, P. van der Geer, K. Letwin, M. D. Waterfield, T. Hunter, and T. Pawson. 1992. Tyr721 regulates specific binding of the CSF-1 receptor kinase insert to PI 3′-kinase SH2 domains: a model for SH2-mediated receptortarget interactions. EMBO J. 11:1365–1372.
  • Rennick, D., G. Yang, L. Gemmell, and F. Lee. 1987. Control of hemopoiesis by a bone marrow stromal cell clone: lipopolysaccharide- and interleukin-1-inducible production of colony-stimulating factors. Blood 69:682–691.
  • Roussel, M. F., J. L. Cleveland, S. A. Shurtleff, and C. J. Sherr. 1991. Myc rescue of a mutant CSF-1 receptor impaired in mitogenic signalling. Nature (London) 353:361–363.
  • Roussel, M. F., S. A. Shurtleff, J. R. Downing, and C. J. Sherr. 1990. A point mutation at tyrosine-809 in the human colony-stimulating factor 1 receptor impairs mitogenesis without abrogating tyrosine kinase activity, association with phosphatidylinositol 3-kinase, or induction of C-Fos and JunB genes. Proc. Natl. Acad. Sci. USA 87:6738–6742.
  • Sawyers, C. L., W. Callahan, and O. N. Witte. 1992. Dominant negative myc blocks transformation by ABL oncogenes. Cell 70:901–910.
  • Schiff-Maker, L., M. C. Burns, J. B. Konopka, S. Clark, O. N. Witte, and N. Rosenberg. 1986. Monoclonal antibodies specific for N-Abl- and c-Abl-encoded molecules. J. Virol. 57:1182–1186.
  • Shtivelman, E., B. Lifshitz, R. P. Gale, and E. Canaai. 1985. Fused transcript of Abl and Bcr genes in chronic myelogenous leukaemia. Nature (London) 315:550–554.
  • Snyder, M. A., J. M. Bishop, W. W. Colby, and A. D. Levinson. 1983. Phosphorylation of tyrosine-416 is not required for the transforming properties and kinase activity of Pp60V-Src. Cell 32:891–901.
  • Weinmaster, G., M. J. Zoller, M. Smith, E. Hinze, and T. Pawson. 1984. Mutagenesis of Fujinami sarcoma virus: evidence that tyrosine phosphorylation of P130Gag-Fps modulates its biological activity. Cell 37:559–568.
  • White, M. F., J. N. Livingston, J. M. Backer, V. Lauris, T. J. Dull, A. Ullrich, and C. R. Kahn. 1988. Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell 54:641–649.
  • Wilden, P. A., J. M. Backer, C. R. Kahn, D. A. Cahill, G. J. Schroeder, and M. F. White. 1990. The insulin receptor with phenylalanine replacing tyrosine-1146 provides evidence for separate signals regulating cellular metabolism and growth. Proc. Natl. Acad. Sci. USA 87:3358–3362.
  • Young, J. C., M. L. Gishizky, and O. N. Witte. 1991. Hyperexpression of interleukin-7 is not necessary or sufficient for transformation of a pre-B lymphoid cell line. Mol. Cell. Biol. 11:854–863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.