5
Views
9
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Plasma Membrane-Targeted ras GTPase-Activating Protein Is a Potent Suppressor of p21ras Function

, &
Pages 2420-2431 | Received 07 Aug 1992, Accepted 25 Jan 1993, Published online: 31 Mar 2023

REFERENCES

  • Adari, H., D. R. Lowy, B. M. Willumsen, C. J. Der, and F. McCormick. 1988. Guanosine triphosphatase activating protein (GAP) interacts with the p21ras effector binding domain. Science 240:518–521.
  • Ballester, R., D. Marchuk, M. Boguski, A. Saulino, R. Letcher, M. Wigler, and F. Collins. 1990. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63:851–859.
  • Ballester, R., T. Michaeli, K. Ferguson, H. P. Xu, F. McCormick, and M. Wigler. 1989. Genetic analysis of mammalian GAP expressed in yeast. Cell 59:681–686.
  • Barbacid, M. 1987. ras genes. Annu. Rev. Biochem. 56:779–827.
  • Basu, T. H., D. H. Gutmann, J. A. Fletcher, T. W. Glover, F. S. Collins, and J. Downward. 1992. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature (London) 356:713–715.
  • Bollag, G., and F. McCormick. 1991. Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature (London) 351:576–579.
  • Buchberg, A. M., L. S. Cleveland, N. S. Jenkins, and N. G. Copeland. 1990. Sequence homology shared by neurofibroma-tosis type 1 gene and IRA-1 and IRA-2 negative regulators of the RAS cyclic AMP pathway. Nature (London) 347:291–294.
  • Cales, C., J. F. Hancock, C. J. Marshall, and A. Hall. 1988. The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature (London) 332:548–551.
  • Cawthorn, R. M., R. Weiss, G. Xu, D. Viskochil, M. Culver, J. Stevens, M. Robertson, D. Dunn, R. Gestsland, P. O’Connell, and R. White. 1990. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure and point mutations. Cell 62:193–201.
  • Chu, G., H. Hayakawa, and P. Berg. 1987. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15:1311–1326.
  • DeClue, J. E., B. D. Cohen, and D. R. Lowy. 1991. Identification and characterization of the neurofibromatosis type 1 protein product. Proc. Natl. Acad. Sci. USA 88:9914–9918.
  • DeClue, J. E., A. G. Papageorge, J. A. Fletcher, S. R. Diehl, N. Ratner, W. C. Vass, and D. R. Lowy. 1992. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69:265–273.
  • DeClue, J. E., J. C. Stone, R. A. Blanchard, A. G. Papageorge, P. Martin, K. Zhang, and D. R. Lowy. 1991. A ras effector domain mutant which is temperature sensitive for cellular transformation: interactions with GTPase-activating protein and NF-1. Mol. Cell. Biol. 11:3132–3138.
  • DeClue, J. E., K. Zhang, P. Redford, W. C. Vass, and D. R. Lowy. 1991. Suppression of src transformation by overexpression of full-length GTPase-activating protein (GAP) or of the GAP C terminus. Mol. Cell. Biol. 11:2819–2825.
  • Dominguez, I., M. S. Marshall, J. B. Gibbs, A. Garcia de Herreros, M. E. Cornet, G. Graziani, M. T. Diaz-Meco, T. Johansen, F. McCormick, and J. T. I. Moscat. 1991. Role of GTPase activating protein in mitogenic signalling through phos-phatidylcholine-hydrolysing phospholipase C. EMBO J. 10:3215–3220.
  • Ellis, C., M. Moran, F. McCormick, and T. Pawson. 1990. Phosphorylation of GAP and GAP-associated proteins by trans-forming and mitogenic tyrosine kinases. Nature (London) 343:377–381.
  • Feig, L. A., and G. M. Cooper. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8:3235–3243.
  • Gaul, U., G. Mardon, and G. Rubin. 1992. A putative ras GTPase activating protein acts as a negative regulator of signalling by the Sevenless receptor tyrosine kinase. Cell 68:1001–1019.
  • Gibbs, J. B., M. S. Marshall, E. M. Scolnick, R. A. Dixon, and U. S. Vogel. 1990. Modulation of guanine nucleotides bound to ras in NIH3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). J. Biol. Chem. 265:20437–20442.
  • Gibbs, J. B., M. D. Schaber, T. L. Schofield, E. M. Scolnick, and I. S. Sigal. 1989. Xenopus oocyte germinal-vesicle breakdown induced by (Val12)Ras is inhibited by a cytosol-localised Ras mutant. Proc. Natl. Acad. Sci. USA 86:6630–6634.
  • Gutierrez, L., A. I. Magee, C. J. Marshall, and J. F. Hancock. 1989. Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxyl-terminal proteolysis. EMBO J. 8:1093–1098.
  • Hall, A. 1990. ras and GAP—who’s controlling whom? Cell 61:921–923.
  • Hancock, J. F., K. Cadwallader, and C. J. Marshall. 1991. Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J. 10:641–646.
  • Hancock, J. F., K. Cadwallader, H. Paterson, and C. J. Marshall. 1991. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 10:4033–4039.
  • Hancock, J. F., A. I. Magee, J. Childs, and C. J. Marshall. 1989. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57:1167–1177.
  • Hancock, J. F., H. Paterson, and C. J. Marshall. 1990. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63:133–139.
  • Hattori, S., M. Maekawa, and S. Nakamura. 1992. Identification of neurofibromatosis type I gene product as an insoluble GTPase-activating protein toward ras p21. Oncogene 7:481–485.
  • Imai, Y., S. Miyake, D. Hughes, and M. Yamamoto. 1991. Identification of a GTPase-activating protein homolog in Schizosaccharomyces pombe. Mol. Cell. Biol. 11:3088–3094.
  • Kaplan, D. R., D. K. Morrison, G. Wong, F. McCormick, and L. T. Williams. 1990. PDGF beta-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signalling complex. Cell 61:125–133.
  • Kazlauskas, A., C. Ellis, T. Pawson, and J. A. Cooper. 1990. Binding of GAP to activated PDGF receptors. Science 247:1578–1581.
  • Li, Y., G. Bollag, R. Clark, J. Stevens, L. Conroy, D. Fults, K. Ward, E. Friedman, W. Samowitz, M. Robertson, P. Bradley, F. McCormick, R. White, and R. Cawthorn. 1992. Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell 69:275–281.
  • Marshall, C. J., A. Hall, and R. Weiss. 1982. A transforming gene present in human sarcoma cell lines. Nature (London) 299:171–173.
  • Marshall, M. S., W. S. Hill, A. S. Ng, U. S. Vogel, M. D. Schaber, E. M. Scolnick, R. A. Dixon, I. S. Sigal, and J. B. Gibbs. 1989. A C-terminal domain of GAP is sufficient to stimulate ras p21 GTPase activity. EMBO J. 8:1105–1110.
  • Martin, G. A., D. Viskochil, G. Bollag, P. C. McCabe, W. J. Crosier, H. Haubruck, L. Conroy, R. Clark, P. O’Connell, R. M. Cawthon, M. A. Innis, and F. McCormick. 1990. The GAP- related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849.
  • Martin, G. A., A. Yatani, R. Clark, P. Polakis, A. M. Brown, and F. McCormick. 1992. GAP domains responsible for ras p21-dependent inhibition of muscarinic atrial K+ channel currents. Science 255:192–194.
  • McCormick, F. 1989. ras GTPase activating protein: signal transmitter and signal terminator. Cell 56:5–8.
  • Miller, J., and R. N. Germain. 1986. Efficient cell surface expression of class II MHC molecules in the absence of associated invariant chain. J. Exp. Med. 164:1478–1489.
  • Molloy, C. J., D. P. Bottaro, T. P. Fleming, M. S. Marshall, J. B. Gibbs, and S. Aaronson. 1989. PDGF induction of tyrosine phosphorylation of GTPase activating protein. Nature (London) 342:711–714.
  • Moran, M. F., P. Polakis, F. McCormick, T. Pawson, and C. Ellis. 1991. Protein-tyrosine kinases regulate the phosphoryla-tion, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Mol. Cell. Biol. 11:1804–1812.
  • Morgenstern, J. P., and H. Land. 1990. Advanced mammalian gene transfer: high titer retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18:3587–3596.
  • Nori, M., U. S. Vogel, J. B. Gibbs, and M. J. Weber. 1991. Inhibition of v-src-induced transformation by a GTPase-activating protein. Mol. Cell. Biol. 11:2812–2818.
  • Schweighoffer, F., I. Barlat, M.-C. Chevallier-Multon, and B. Tocque. 1992. Implication of GAP in ras-dependent activation of a polyoma enhancer sequence. Science 256:825–827.
  • Settleman, J., Y. Narasimhan, L. C. Foster, and R. A. Weinberg. 1992. Molecular cloning of cDNAs encoding the GAP-associated protein pl90: implications for a signalling pathway from ras to the nucleus. Cell 69:539–549.
  • Skinner, R. H., S. Bradley, A. L. Brown, N. J. E Johnson, S. Rhodes, D. K. Stammers, and P. N. Lowe. 1991. Use of the Glu-Glu-Phe C-terminal epitope for rapid purification of the catalytic domain of normal and mutant ras GTPase-activating proteins. J. Biol. Chem. 266:14163–14166.
  • Skinner, R. H., and P. Lowe. Personal communication.
  • Stacey, D. W., L. A. Feig, and J. B. Gibbs. 1991. Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras. Mol. Cell. Biol. 11:4053–4064.
  • Tanaka, K., M. Nakafuku, T. Satoh, M. S. Marshall, J. B. Gibbs, K. Matsumoto, Y. Kaziro, and A. Toh-e. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60:803–807.
  • Tanaka, K., M. Nakafuku, F. Tamanoi, Y. Kaziro, K. Matsumoto, and A. Toh-e. 1990. IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol. Cell. Biol. 10:4303–4313.
  • Trahey, M., and F. McCormick. 1987. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545.
  • Trahey, M., G. Wong, R. Halenbeck, B. Rubinfeld, G. A. Martin, M. Ladner, C. M. Long, W. J. Crosier, K. Watt, K. Koths, and F. McCormick. 1988. Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700.
  • Viskochil, D., A. M. Buchberg, G. Xu, R. M. Cawthorn, J. Stevens, R. K. Wolff, M. Culver, J. C. Carey, N. J. Copeland, N. A. Jenkins, R. White, and P. O’Connell. 1990. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62:187–192.
  • Vogel, U. S., R. A. Dixon, M. D. Schaber, R. E. Diehl, M. S. Marshall, E. M. Scolnick, I. S. Sigal, and J. B. Gibbs. 1988. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature (London) 335:90–93.
  • Wallace, M. R., D. A. Marchuk, L. A. Andersen, R. Letcher, H. M. Odeh, A. M. Saulino, J. W. Fountain, A. Brereton, J. Nicholson, A. L. Mitchell, B. H. Brownstein, and F. S. Collins. 1990. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–186.
  • Wang, Y., M. Boguski, M. Riggs, L. Rodgers, and M. Wigler. 1991. sar1, a gene from the yeast Schizosaccharomyces pombe encoding a protein that regulates ras1. Cell Reg. 2:453–465.
  • Wong, G., O. Muller, R. Clark, L. Conroy, M. F. Moran, P. Polakis, and F. McCormick. 1992. Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. Cell 69:551–558.
  • Xu, G. F., B. Lin, K. Tanaka, D. Dunn, D. Wood, R. Gesteland, R. White, R. Weiss, and F. Tamanoi. 1990. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63:835–841.
  • Xu, G. F., P. O’Connell, D. Viskochil, R. Cawthon, M. Robertson, M. Culver, D. Dunn, J. Stevens, R. Gesteland, R. White, and R. Weiss. 1990. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608.
  • Yatani, A., K. Okabe, P. Polakis, R. Halenbeck, F. McCormick, and A. M. Brown. 1990. ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ channels. Cell 61:769–776.
  • Zhang, K., J. E. DeClue, W. C. Vass, A. G. Papageorge, F. McCormick, and D. R. Lowy. 1990. Suppression of c-ras transformation by GTPase-activating protein. Nature (London) 346:754–756.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.