42
Views
39
CrossRef citations to date
0
Altmetric
Gene Expression

Activation of Human Heat Shock Genes Is Accompanied by Oligomerization, Modification, and Rapid Translocation of Heat Shock Transcription Factor HSF1

, &
Pages 2486-2496 | Received 07 Oct 1992, Accepted 14 Jan 1993, Published online: 31 Mar 2023

REFERENCES

  • Abravaya, K., B. Phillips, and R. I. Morimoto. 1991. Attenuation of the heat shock response is mediated by the release of bound HSF and is modulated by changes in growth and heat shock temperatures. Genes Dev. 5:2117–2127.
  • Abravaya, K. A., M. Myers, S. P. Murphy, and R. I. Morimoto. 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6:1153–1164.
  • Amin, J., J. Ananthan, and R. Voellmy. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761–3769.
  • Ananthan, J., A. L. Goldberg, and R. Voellmy. 1986. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524.
  • Andersson, L. O., H. Borg, and M. Mikaelson. 1972. Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett. 20:199–201.
  • Baeuerle, P. A., and D. Baltimore. 1988. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kB transcription factor. Cell 53:211–217.
  • Baler, R., W. J. Welch, and R. Voellmy. 1992. Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J. Cell Biol. 117:1151–1159.
  • Beckmann, R. P., L. A. Mizzen, and W. J. Welch. 1990. Interaction of hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854.
  • Bonner, J. J., S. Heyward, and D. L. Fackenthal. 1992. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor. Mol. Cell. Biol. 12:1021–1030.
  • Catelli, M. G., N. Binart, I. Jung-Testas, J. M. Renoir, E. E. Baulieu, J. R. Feramisco, and W. J. Welch. 1985. The common 90-kd protein component of non-transformed ‘8S’ steroid receptors is a heat shock protein. EMBO J. 4:3131–3135.
  • Chappell, T., W. J. Welch, D. M. Schlossman, K. B. Palter, M. J. Schlesinger, and J. E. Rothman. 1986. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45:3–13.
  • Chirico, W. J., G. Waters, and G. Blobel. 1988. 70K heat shock related proteins stimulate protein translocation into mi-crosomes. Nature (London) 333:805–810.
  • Clos, J., T. Westwood, P. B. Becker, S. Wilson, K. Lambert, and C. Wu. 1990. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63:1085–1097.
  • Deshaies, R. J., B. D. Koch, M. Werner-Washburne, E. A. Craig, and R. Schekman. 1988. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature (London) 333:800–805.
  • DiDomenico, B. J., G. E. Bugaisky, and S. Lindquist. 1982. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31:593–603.
  • Dreano, M., J. Brochot, A. Myers, C. Cheng-Meyer, D. Rung-ger, R. Voellmy, and P. Bromley. 1986. High-level, heat-regulated synthesis of proteins in eukaryotic cells. Gene 49:1–8.
  • Edington, B. V., S. A. Whelan, and H. E. Hightower. 1989. Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction. J. Cell. Physiol. 139:219–228.
  • Flynn, G. C., T. G. Chappell, and J. E. Rothman. 1989. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245:385–390.
  • Gallo, G. J., T. J. Schuetz, and R. E. Kingston. 1991. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:281–288.
  • Gamer, J., H. Bujard, and B. Bukau. 1992. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833–842.
  • Goff, S. A., and A. L. Goldberg. 1985. Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell 41:587–595.
  • Goldenberg, C. J., Y. Luo, M. Fenna, R. Baler, R. Weinmann, and R. Voellmy. 1988. Purified human factor activates heat shock promoter in a HeLa cell-free transcription system. J. Biol. Chem. 263:19734–19739.
  • Haas, I. G., and M. Wabl. 1983. Immunoglobulin heavy chain binding protein. Nature (London) 306:387–389.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hendershot, L., D. Bole, G. Koehler, and J. F. Kearney. 1987. Assembly and secretion of heavy chains that do not associate translationally with immunoglobulin heavy chain-binding protein. J. Cell Biol. 104:761–767.
  • Hensold, J. O., C. R. Hunt, S. K. Calderwood, D. E. Housman, and R. E. Kingston. 1990. DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol. Cell. Biol. 10:1600–1608.
  • Hightower, L. E. 1980. Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J. Cell. Physiol. 102:407–427.
  • Hurtley, S. M., D. G. Bole, H. Hoover-Litty, A. Helenios, and C. S. Copeland. 1989. Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP). J. Cell Biol. 108:2117–2126.
  • Jurivich, D. A., L. Sistonen, R. A. Kroes, and R. I. Morimoto. 1992. Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245.
  • Kassenbrock, C. K., P. D. Garcia, P. Walter, and R. B. Kelly. 1988. Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro. Nature (London) 333:90–93.
  • Kelly, P. M., and M. J. Schlesinger. 1978. The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell 15:1277–1286.
  • Kingston, R. E., T. J. Schuetz, and Z. Larin. 1987. Heatinducible human factor that binds to a human hsp70 promoter. Mol. Cell. Biol. 7:1530–1534.
  • Larson, J. S., T. S. Schuetz, and R. E. Kingston. 1988. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature (London) 335:372–375.
  • Mosser, D. D., P. T. Kotzbauer, K. D. Sarge, and R. I. Morimoto. 1990. In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc. Natl. Acad. Sci. USA 87:3748–3752.
  • Nieto-Sotelo, J., G. Wiederrecht, A. Okuda, and C. S. Parker. 1990. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62:807–817.
  • Palleros, D. R., W. J. Welch, and A. L. Fink. 1991. Interaction of hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proc. Natl. Acad. Sci. USA 88:5719–5723.
  • Parker, C. S., and J. Topol. 1984. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene. Cell 37:273–283.
  • Pelham, H. R. B. 1986. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961.
  • Peristc, O., H. Xiao, and J. T. Lis. 1989. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59:797–806.
  • Price, B. D., and S. K. Calderwood. 1991. Ca2+ is essential for multistep activation of the heat shock factor in permeabilized cells. Mol. Cell. Biol. 11:3365–3368.
  • Rabindran, S. K., G. Giorgi, J. Clos, and C. Wu. 1991. Molecular cloning and expression of a human heat shock transcription factor, HSF1. Proc. Natl. Acad. Sci. USA 88:6906–6910.
  • Sanchez, E. R., D. O. Toft, M. J. Schlesinger, and W. B. Pratt. 1985. Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat shock protein. J. Biol. Chem. 260:12398–12401.
  • Sarge, K. D., V. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5:1902–1911.
  • Scharf, K.-D., S. Rose, W. Zott, F. Schoff, and L. Nover. 1990. Three tomato genes code for heat stress transcription factors with a remarkable degree of homology to the DNA-binding domain of the yeast HSF. EMBO J. 9:4495–4501.
  • Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88:6910–6915.
  • Schuh, S., W. Yonemoto, J. Brugge, V. J. Bauer, R. M. Riel, W. P. Sullivan, and D. O. Toft. 1985. A 90,000-dalton binding protein common to both steroid receptors and the Rous sarcoma virus transforming protein, pp60v-src. J. Biol. Chem. 260:14292–14296.
  • Sistonen, L., K. D. Sarge, B. Philips, K. Abravaya, and R. I. Morimoto. 1992. Activation of heat shock factor 2 (HSF2) during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell. Biol. 12:4104–4111.
  • Sorger, P. K., and H. R. B. Pelham. 1987. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J. 6:3035–3041.
  • Sorger, P. K., M. J. Lewis, and H. R. B. Pelham. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature (London) 329:81–84.
  • Sorger, P. K., and H. C. M. Nelson. 1989. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813.
  • Sorger, P. K., and H. R. B. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temper-ature-dependent phosphorylation. Cell 54:855–864.
  • Stone, D. E., and E. A. Craig. 1990. Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:1622–1632.
  • Straus, D. B., W. A. Walter, and C. A. Gross. 1989. The activity of σ32 is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev. 3:2003–2010.
  • Straus, D. B., W. A. Walter, and C. A. Gross. 1990. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev. 4:2202–2209.
  • Tilly, K., N. McKittrick, M. Zylicz, and C. Georgopoulos. 1983. The dnaK protein modulates the heat shock response of Escherichia coli. Cell 34:641–646.
  • Tilly, K., J. Spence, and C. Georgopoulos. 1989. Modulation of stability of the Escherichia coli heat shock regulatory factor σ32. J. Bacteriol. 171:1585–1589.
  • Topol, J., D. M. Ruden, and C. S. Parker. 1985. Sequences required for in vitro transcriptional activation of a Drosophila hsp70 gene. Cell 42:527–537.
  • Ungewickel, E. 1985. The 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. EMBO J. 4:3385–3391.
  • Voellmy, R., A. Ahmed, P. Schiller, P. Bromley, and D. Rung-ger. 1985. Isolation and functional analysis of a human 70,000-dalton heat shock protein gene segment. Proc. Natl. Acad. Sci. USA 82:4949–4953.
  • Voellmy, R., and D. Rungger. 1982. Transcription of a Drosophila heat shock gene is heat-induced in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 79:1776–1780.
  • Welch, W. 1990. The mammalian stress response, cell physiology and biochemistry of proteins, p. 223–278. In R. I. Morimoto, A. Tissieres, and C. Georgopoulos (ed.), Stress proteins in biology and medicine. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Westwood, J. T., J. Clos, and C. Wu. 1992. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature (London) 353:822–827.
  • Wiederrecht, G., D. Seto, and C. S. Parker. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853.
  • Wu, B., C. Hunt, and R. I. Morimoto. 1985. Structure and expression of the human gene encoding major heat shock protein hsp70. Mol. Cell. Biol. 5:330–341.
  • Wu, C. 1984. Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature (London) 311:81–84.
  • Wu, C., S. Wilson, S. Walker, I. Dawid, T. Paisley, V. Zimarino, and H. Ueda. 1987. Purification and properties of Drosophila heat shock activator protein. Science 238:1247–1253.
  • Xiao, H., and J. T. Lis. 1988. Germline transformation used to define key features of heat shock response elements. Science 239:1139–1142.
  • Zimarino, V., C. Tsai, and C. Wu. 1990. Complex modes of heat shock factor activation. Mol. Cell. Biol. 10:752–759.
  • Zimarino, V., and C. Wu. 1987. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature (London) 327:727–730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.