4
Views
38
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The p53 Activation Domain Binds the TATA Box-Binding Polypeptide in Holo-TFIID, and a Neighboring p53 Domain Inhibits Transcription

, , &
Pages 3291-3300 | Received 25 Nov 1992, Accepted 08 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Baker, S. J., S. Markowitz, E. R. Fearon, J. K. Wilson, and B. Vogelstein. 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915.
  • Blank, V., P. Kourilsky, and A. Israel. 1992. NF-κB and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem. Sci. 17:135–140.
  • Boyer, T. G., and A. J. Berk. Unpublished data.
  • Bull, P., K. L. Morley, M. F. Hoekstra, T. Hunter, and I. Verma. 1990. The mouse c-rel protein has an N-terminal regulatory domain and a C-terminal transcriptional transactivation domain. Mol. Cell. Biol. 10:5473–5485.
  • Buratowski, S., S. Hahn, L. Guarente, and P. A. Sharp. 1989. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549–561.
  • Cortes, P., O. Flores, and D. Reinberg. 1992. Factors involved in specific transcription by mammalian RNA polymerase II: purification and analysis of transcription factor ILA and identification of transcription factor IIJ. Mol. Cell. Biol. 12:413–421.
  • Diller, L., J. Kassel, C. E. Nelson, M. A. Gryka, G. Litwak, M. Gebhardt, B. Bressac, M. Ozturk, S. J. Baker, B. Vogelstein, and S. H. Friend. 1990. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol. 10:5772–5781.
  • Dynlacht, B. D., T. Hoey, and R. Tjian. 1991. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66:563–576.
  • Eliyahu, D., D. Michalovitz, S. Eliyahu, O. Pinhasi-Kimhi, and M. Oren. 1989. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc. Natl. Acad. Sci. USA 86:8763–8767.
  • Farmer, G., J. Bargonetti, H. Zhu, P. Friedman, R. Prywes, and C. Prives. 1992. Wild-type p53 activates transcription in vitro. Nature (London) 358:83–85.
  • Fields, S., and S. K. Jang. 1990. Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1048.
  • Finlay, C. A., P. W. Hinds, and A. J. Levine. 1989. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093.
  • Flores, O., H. Lu, and D. Reinberg. 1992. Factors involved in specific transcription by mammalian RNA polymerase II: identification and characterization of factor IIH. J. Biol. Chem. 267:2786–2793.
  • Gorman, C. M., L. F. Moffat, and B. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Ha, I., W. S. Lane, and D. Reinberg. 1991. Cloning of a human gene encoding the general transcription factor IIB. Nature (London) 352:689–695.
  • Harlow, E., L. V. Crawford, D. C. Pim, and N. M. Williamson. 1981. Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 39:861–869.
  • Harris, N., E. Brill, O. Shohat, M. Prokocimer, D. Wolf, N. Arai, and V. Rotter. 1986. Molecular basis for heterogeneity of the human p53 protein. Mol. Cell. Biol. 6:4650–4656.
  • Herbomel, P., B. Bourachot, and M. Yaniv. 1984. Two distinct enhancers with different cell specificities coexist in the regulatory region of polyma. Cell 39:653–662.
  • Hollstein, M., D. Sidransk, B. Vogelstein, and C. C. Harris. 1991. p53 mutation in human cancers. Science 253:49–53.
  • Ingles, C. J., M. Shales, W. D. Cress, S. J. Triezenberg, and J. Greenblatt. 1991. Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature (London) 351:588–590.
  • Kao, C. C., P. M. Lieberman, M. C. Schmidt, Q. Zhou, R. Pei, and A. J. Berk. 1990. Cloning of a transcriptionally active human TATA binding factor. Science 248:1646–1650.
  • Keegan, L., G. Gill, and M. Ptashne. 1986. Separation of DNA binding from the transcription activation function of eukaryotic regulatory protein. Science 231:699–704.
  • Kern, S. E., J. A. Pietenpol, S. Thiagalingam, A. Seymour, K. W. Kinzler, and B. Vogelstein. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256:827–830.
  • Lane, D. P., and S. Benchimol. 1990. p53: oncogene or antioncogene. Genes Dev. 4:1–8.
  • Lee, W. S., C. C. Kao, G. O. Bryan, X. Liu, and A. J. Berk. 1991. Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67:365–376.
  • Levine, A. J., J. Momand, and C. A. Finlay. 1991. The p53 tumour suppressor gene. Nature (London) 351:453–456.
  • Lieberman, P. M., and A. J. Berk. 1991. The zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev. 5:2441–2454.
  • Lillie, J. W., and M. R. Green. 1989. Transcription activation by the adenovirus E1A protein. Nature (London) 338:39–44.
  • Lin, Y. S., and M. R. Green. 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64:971–978.
  • Lin, Y. S., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green. 1991. Binding of general transcription factor TFIIB to an acidic activating region. Nature (London) 353:569–571.
  • Livingstone, L. R., A. White, J. Sprouse, E. Livanos, T. Jacks, and T. D. Tisty. 1992. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935.
  • Mitchell, P. J., and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378.
  • Momand, J., and A. J. Levine. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245.
  • Nikilov, D. B., S.-H. Hu, J. Lin, A. Hoffman, M. Horikoshi, N.-H. Chua, R. G. Roeder, and S. K. Burley. 1992. Crystal structure of TFIID TATA-box binding protein. Nature (London) 360:40–46.
  • O’Rourke, R. W., C. W. Miller, G. J. Kato, K. J. Simon, D. Chen, C. V. Dang, and H. P. Koeffler. 1990. A potential transcriptional activation element in the p53 protein. Oncogene 5:1829–1832.
  • Ptashne, M. 1988. How eukaryotic transcriptional activators work. Nature (London) 335:683–689.
  • Ptashne, M., and A. A. F. Gann. 1990. Activators and targets. Nature (London) 346:329–331.
  • Raycroft, L., H. Wu, and G. Lozano. 1990. Transcription activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051.
  • Sadowski, I., M. Jun, S. Triezenberg, and M. Ptashne. 1988. Gal4-VP16 is an unusually potent transcriptional activator. Nature (London) 335:563–564.
  • Sawadogo, M., and A. Sentenac. 1990. RNA polymerase B (II) and general transcription factors. Annu. Rev. Biochem. 59:711–754.
  • Seto, E., A. Usheva, G. P. Zambetti, J. Momand, N. Horikoshi, R. Weinmann, A. J. Levine, and T. Shenk. 1992. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 89:12028–12032.
  • Smith, D. B., and K. S. Johnson. 1989. Single-step purification of polypeptides expressed in E. coli as fusion with glutathione S-transferase. Gene 67:31–40.
  • Stringier, F. K., C. J. Ingles, and J. Greenblatt. 1990. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature (London) 345:783–786.
  • Studier, F. W., A. H. Rosanberg, J. J. Dunn, and J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct the expression of cloned genes. Methods Enzymol. 185:60–89.
  • Sumimoto, H., Y. Ohkuma, T. Yamamoto, M. Horikoshi, and R. Roeder. 1990. Factors involved in specific transcription by mammalian RNA polymerase II: identification of general transcription factor TFIIG. Proc. Natl. Acad. Sci. USA 87:91589162.
  • Takebe, Y., M. Seiki, J. Fujisawa, P. Hoy, K. Yokota, K. Arai, M. Yoshida, and N. Arai. 1988. SRα promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol. Cell. Biol. 8:466–472.
  • Tanese, N., B. F. Pugh, and R. Tjian. 1991. Coactivators for a proline-rich activator purified from the multisubunit human TFIID complex. Genes Dev. 5:2212–2224.
  • Timmers, H. T. M., and P. A. Sharp. 1991. The mammalian TFIID protein is present in two functionally distinct complexes. Genes Dev. 5:1946–1956.
  • Truant, R., H. Xiao, C. J. Ingles, and J. Greenblatt. 1993. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268:2284–2287.
  • Van Dyke, M. W., R. G. Roeder, and M. Sawadogo. 1988. Physical analysis of transcription preinitiation complex assembly on a class II gene promoter. Science 241:1335–1338.
  • Vogelstein, B. 1990. A deadly inheritance. Nature (London) 348:681–682.
  • Weintraub, H., S. Hauschka, and S. Tapscott. 1991. The MCK enhancer contains a p53 responsive element. Proc. Natl. Acad. Sci. USA 88:4570–4571.
  • Yew, P. R., and A. J. Berk. 1992. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature (London) 357:82–85.
  • Yin, Y., M. A. Tainsky, F. Z. Bischoff, L. C. Strong, and G. W. Wahl. 1992. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948.
  • Zambetti, G., J. Bargonetti, K. Walker, C. Prives, and A. J. Levine. 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6:1143–1152.
  • Zhou, Q., P. M. Lieberman, T. G. Boyer, and A. J. Berk. 1992. Holo-TFIID supports transcriptional activation by diverse activators and from a TATA-less promoter. Genes Dev. 6:1964–1974.
  • Zhou, Q., T. G. Boyer, and A. J. Berk. 1993. Factors (TAFs) required for activated transcription interact with the TATA box-binding protein conserved core domain. Genes Dev. 7:180–187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.