2
Views
19
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Tumor Suppressor p53 Regulates Its Own Transcription

, , &
Pages 3415-3423 | Received 07 Dec 1992, Accepted 08 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Angel, P., K. Hattori, T. Smeal, and M. Karin. 1988. The jun proto-oncogene is positively autoregulated by its product, Jun/ AP-1. Cell 55:875–885.
  • Baeuerle, P. A., and D. Baltimore. 1989. A 65-kD subunit of active NF-κB is required for inhibition of NF-κB by I κB. Genes Dev. 3:1689–1698.
  • Baker, S. J., S. Markowitz, E. Fearon, J. K. V Willson, and B. Vogelstein. 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915.
  • Baldwin, A. S., K. P. LeClair, H. Singh, and P. A. Sharp. 1990. A large protein containing zinc finger domains binds to related sequence elements in the enhancers of the class I major histocompatibility complex and kappa immunoglobulin genes. Mol. Cell. Biol. 10:1406–1414.
  • Bargonetti, J., P. N. Friedman, S. E. Kern, B. Vogelstein, and C. Prives. 1991. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65:1083–1091.
  • Bienz, B., R. Zakut-Houri, D. Givol, and M. Oren. 1984. Analysis of the gene coding for the murine cellular tumor antigen p53. EMBO J. 3:2179–2183.
  • Caron de Fromentel, C., and T. Soussi. 1992. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chrom. Cancer 4:1–15.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Chen, P.-L., Y. Chen, R. Bookstein, and W.-H. Lee. 1990. Genetic mechanisms of tumor suppression by the human p53 gene. Science 250:1576–1580.
  • Chin, K.-V., K. Ueda, I. Pastan, and M. M. Gottesman. 1991. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255:460–462.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidine isothiocyanate-phenol-chloro- form extraction. Anal. Biochem. 162:156–159.
  • Church, G. M., and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1981–1984.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Diller, L., J. Kassel, C. E. Nelson, M. A. Gryka, G. Litwak, M. Gebhardt, B. Bressac, M. Ozturk, S. J. Baker, B. Vogelstein, and S. H. Friend. 1990. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol. 10:5772–5781.
  • El-Deiry, W. S., S. E. Kern, J. A. Pietenpol, K. W. Kinzler, and B. Vogelstein. 1992. Definition of a consensus binding site for p53. Nature Genet. 1:45–49.
  • Eliyahu, D., D. Michalovitz, S. Eliyahu, O. Pinhasi-Kimhi, and M. Oren. 1989. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc. Natl. Acad. Sci. USA 86:8763–8767.
  • Fan, C.-M., and T. Maniatis. 1990. A DNA-binding protein containing two widely separated zinc finger motifs that recognize the same DNA sequence. Genes Dev. 4:29–42.
  • Farmer, G., J. Bargonetti, H. Zhu, P. Friedman, R. Prywes, and C. Prives. 1992. Wild-type p53 activates transcription in vitro. Nature (London) 358:83–86.
  • Fields, S., and S. K. Jang. 1990. Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049.
  • Finlay, C. A., P. W. Hinds, and A. J. Levine. 1989. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093.
  • Funk, W. D., D. T. Pak, R. H. Karas, W. E. Wright, and J. W. Shay. 1992. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12:2866–2871.
  • Gilmore, T. D. 1990. NF-κB, KBF1, dorsal and related matters. Cell 62:841–843.
  • Ginsberg, D., F. Mechta, M. Yaniv, and M. Oren. 1991. Wildtype p53 can downmodulate the activity of various promoters. Proc. Natl. Acad. Sci. USA 88:9979–9983.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Harvey, M., A. T. Sands, R. S. Weiss, M. E. Hegi, R. W. Wiseman, P. Pontazis, B. C. Giovanella, M. A. Tainsky, A. Bradley, and L. A. Donehower. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene, in press.
  • Hendrickson, W., and R. Schleif. 1985. A dimer of AraC protein contacts three adjacent major groove regions of the araI DNA site. Proc. Natl. Acad. Sci. USA 82:3129–3133.
  • Hinds, P., C. Finlay, and A. J. Levine. 1989. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J. Virol. 63:739–746.
  • Hinds, P. W., C. A. Finlay, R. S. Quartin, S. J. Baker, E. R. Fearon, B. Vogelstein, and A. J. Levine. 1990. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1:571–580.
  • Hollstein, M., D. Sidransky, B. Vogelstein, and C. C. Harris. 1991. p53 mutations in human cancers. Science 253:49–53.
  • Hulboy, D. L., and G. Lozano. Unpublished observations.
  • Jiang, D., A. Srinivasan, G. Lozano, and P. D. Robbins. SV40 T-antigen abrogates p53-mediated transcriptional activity. Oncogene, in press.
  • Johnson, P., D. Gray, M. Mowat, and S. Benchimol. 1991. Expression of wild-type p53 is not compatible with continued growth of p53-negative cells. Mol. Cell. Biol. 11:1–11.
  • Kern, S. E., K. W. Kinzler, A. Bruskin, D. Jarosz, P. Friedman, C. Prives, and B. Vogelstein. 1991. Identification of p53 as a sequence-specific DNA-binding protein. Science 252:17081711.
  • Kern, S. E., J. A. Pietenpol, S. Thiagalingam, A. Seymour, K. W. Kinzler, and B. Vogelstein. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256:827–830.
  • Laimins, L. A., P. Gruss, R. Pozzatti, and G. Khoury. 1984. Characterization of enhancer elements in the long terminal repeat of Moloney murine sarcoma virus. J. Virol. 49:183–189.
  • Malkin, D., F. P. Li, L. C. Strong, J. F. Fraumeni, C. E. Nelson, D. H. Kim, J. Kassel, M. A. Gryka, F. Z. Bischoff, M. A. Tainsky, and S. H. Friend. 1990. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Meyer, R., E. N. Hatada, H.-P. Hohmann, M. Haiker, C. Bartsch, U. Rothlisberger, H.-W. Lahm, E. J. Schlaeger, A. P. G. M. Van Loon, and C. Scheidereit. 1991. Cloning of the DNA-binding subunit of human nuclear factor κB: the level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor α. Proc. Natl. Acad. Sci. USA 88:966–970.
  • Momand, J., G. P. Zambetti, D. C. Olson, D. George, and A. J. Levine. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245.
  • Nakamura, T., D. M. Donovan, K. Hamada, C. M. Sax, B. Norman, J. R. Flanagan, K. Ozato, H. Westphal, and J. Piatigorsky. 1990. Regulation of the mouse αA-crystallin gene: isolation of a cDNA encoding a protein that binds to a cis sequence motif shared with the major histocompatibility complex class I gene and other genes. Mol. Cell. Biol. 10:3700–3708.
  • Nicolaides, N. C., R. Gualdi, C. Casadevall, L. Manzella, and B. Calabretta. Positive autoregulation of c-myb expression via myb binding sites in the 5′ flanking region of the human c-myb gene. Mol. Cell. Biol. 11:6166–6176.
  • Oliner, J. D., K. W. Kinzler, P. S. Meltzer, D. L. George, and B. Vogelstein. 1992. Amplification of a gene encoding a p53- associated protein in human sarcomas. Nature (London) 358:80–83.
  • O’Rourke, R. W., C. W. Miller, G. J. Kato, K. J. Simon, D.-L. Chen, C. V. Dang, and H. P. Koeffler. 1990. A potential transcriptional activation element in the p53 protein. Oncogene 5:1829–1832.
  • Penn, L. J. Z., M. W. Brooks, E. M. Laufer, and H. Land. 1990. Negative autoregulation of c-myc transcription. EMBO J. 9:1113–1121.
  • Raycroft, L., J. R. Schmidt, K. Yoas, M. Hao, and G. Lozano. 1991. Analysis of p53 mutants for transcriptional activity. Mol. Cell. Biol. 11:6067–6074.
  • Raycroft, L., H. Wu, and G. Lozano. 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051.
  • Reisman, D., and V. Rotter. 1993. The helix loop helix containing transcription factor USF binds to and transactivates the promoter of the p53 tumor suppressor gene. Nucleic Acids Res. 21:345–350.
  • Ron, D., A. R. Brasier, and J. F. Habener. 1991. Angiotensinogen gene-inducible enhancer-binding protein 1, a member of a new family of large nuclear proteins that recognize nuclear factor κB-binding sites through a zinc finger motif. Mol. Cell. Biol. 11:2887–2895.
  • Ronen, D., V. Rotter, and D. Reisman. 1991. Expression from the murine p53 promoter is mediated by factor binding to a downstream helix-loop-helix recognition motif. Proc. Natl. Acad. Sci. USA 88:4128–4132.
  • Rovinski, B., D. Munroe, J. Peacock, M. Mowat, A. Bernstein, and S. Benchimol. 1987. Deletion of 5′-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation. Mol. Cell. Biol. 7:847–853.
  • Santhanam, U., A. Ray, and P. B. Sehgal. 1991. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. USA 88:7605–7609.
  • Sassone-Corsi, P., J. C. Sisson, and I. M. Verma. 1988. Transcriptional autoregulation of the proto-oncogene fos. Nature (London) 334:314–319.
  • Scheffner, M., B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. Howley. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136.
  • Schmid, R. M., N. D. Perkins, C. S. Duckett, P. C. Andrews, and G. J. Nabel. 1991. Cloning of an NF-κB subunit which stimulates HIV transcription in synergy with p65. Nature (London) 352:733–736.
  • Srivastava, S., Z. Zhou, K. Pirollo, W. Blattner, and E. H. Chang. 1990. Germline transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature (London) 348:747–749.
  • Tan, T.-H., J. Wallis, and A. J. Levine. 1986. Identification of the p53 protein domain involved in formation of the simian virus 40 large T-antigen-p53 protein complex. J. Virol. 59:574–583.
  • Tuck, S. P., and L. Crawford. 1989. Characterization of the human p53 gene promoter. Mol. Cell. Biol. 9:2163–2172.
  • Unger, T., M. M. Nau, S. Segal, and J. D. Minna. 1992. p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J. 11:1383–1390.
  • Weintraub, H., S. Hauschka, and S. J. Tapscott. 1991. The MCK enhancer contains a p53 responsive element. Proc. Natl. Acad. Sci. USA 88:4570–4571.
  • Yew, P. R., and A. J. Berk. 1992. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature (London) 347:82–85.
  • Zambetti, G. P., J. Bargonetti, K. Walker, C. Prives, and A. J. Levine. 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6:1143–1152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.