3
Views
10
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Platelet-Derived Growth Factor Receptor Mediates Activation of Ras through Different Signaling Pathways in Different Cell Types

, , , &
Pages 3706-3713 | Received 19 Jan 1993, Accepted 15 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Amrein, K. E., N. Flint, B. Panholzer, and P. Burn. 1992. Ras GTPase-activating protein: a substrate and a potential binding protein of the protein-tyrosine kinase p56lck. Proc. Natl. Acad. Sci. USA 89:3343–3346.
  • Bollag, G., and F. McCormick. 1991. Regulators and effectors of ras proteins. Annu. Rev. Cell Biol. 7:601–632.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature (London) 348:125–132.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved structure and molecular mechanism. Nature (London) 349:117–127.
  • Bowtell, D., P. Fu, M. Simon, and P. Senior. 1992. Identification of murine homologues of the Drosophila Son of sevenless gene: potential activators of ras. Proc. Natl. Acad. Sci. USA 89:6511–6515.
  • Brott, B. K., S. Decker, J. Shafer, J. B. Gibbs, and R. Jove. 1991. GTPase-activating protein interactions with the viral and cellular Src kinases. Proc. Natl. Acad. Sci. USA 88:755–759.
  • Burgering, B. M. T., R. H. Medema, J. A. Maassen, M. L. van de Wetering, A. J. van der Eb, F. McCormick, and J. L. Bos. 1991. Insulin stimulation of gene expression mediated by p21 ras activation. EMBO J. 10:1103–1109.
  • Cen, H., A. G. Papageorge, R. Zippel, D. R. Lowy, and K. Zhang. 1992. Isolation of multiple mouse cDNAs with coding homology to Saccharomyces cerevisiae CDC25: identification of a region related to Bcr, Vav, Dbl, and CDC24. EMBO J. 11:4007–4015.
  • Cichowski, K., F. McCormick, and J. S. Brugge. 1992. p21rasGAP association with Fyn, Lyn, and Yes in thrombin- activated platelets. J. Biol. Chem. 267:5025–5028.
  • Coughlin, S. R., J. A. Escobedo, and L. T. Williams. 1989. Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science 243:1191–1194.
  • de Vries-Smits, A. M. M., B. M. T Burgering, S. L. Leevers, C. J. Marshall, and J. L. Bos. 1992. Involvement of p21ras in activation of extracellular signal-regulated kinase 2. Nature (London) 357:602–604.
  • Downward, J., J. D. Graves, P. H. Warne, S. Rayter, and D. A. Cantrell. 1990. Stimulation of p21ras upon T-cell activation. Nature (London) 346:719–723.
  • Duan, D. R., J. A. Escobedo, J. S. Campbell, E. G. Krebs, and L. T. Williams. Unpublished results.
  • Duronio, V., M. J. Welham, S. Abraham, P. Dryden, and J. W. Schrader. 1992. p21ras activation via hemopoietin receptors and c-kit requires tyrosine kinase activity but not tyrosine phosphorylation of p21ras GTPase-activating protein. Proc. Natl. Acad. Sci. USA 89:1587–1591.
  • Escobedo, J. A., D. R. Kaplan, W. M. Kavanaugh, C. W. Turck, and L. T. Williams. 1991. A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol. Cell. Biol. 11:1125–1132.
  • Fantl, W. J., J. A. Escobedo, G. A. Martin, C. W. Turck, M. del Rosario, F. McCormick, and L. T. Williams. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69:413–423.
  • Gibbs, J. B., M. S. Marshall, E. M. Scolnick, R. A. F Dixon, and U. S. Vogel. 1990. Modulation of guanine nucleotides bound to Ras in NIH3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). J. Biol. Chem. 265:20437–20442.
  • Hattori, S., M. Fukuda, T. Yamashita, S. Nakamura, Y. Gotoh, and E. Nishida. 1992. Activation of mitogen-activated protein kinase and its activator by ras in intact cells and in a cell-free system. J. Biol. Chem. 267:20346–20351.
  • Heidaran, M. A., C. J. Molloy, M. Pangelinan, G. G. Choudhury, L. Wang, T. P. Fleming, A. Y. Sakaguchi, and J. H. Pierce. 1992. Activation of the colony-stimulating factor 1 receptor leads to the rapid tyrosine phosphorylation of GTPase-activating protein and activation of cellular p21ras. Oncogene 7:147–152.
  • Izquierdo, M., J. Downward, J. D. Graves, and D. A. Cantrell. 1992. Role of protein kinase C in T-cell antigen receptor regulation of p21ras; evidence that two p21ras regulatory pathways coexist in T cells. Mol. Cell. Biol. 12:3305–3312.
  • Kaplan, D. R., D. K. Morrison, G. Wong, F. McCormick, and L. T. Williams. 1990. PDGF β-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell 61:125–133.
  • Kashishian, A., A. Kazlauskas, and J. A. Cooper. 1992. Phosphorylation sites in the PDGF receptor with different specifici-ties for binding GAP and PI3 kinase in vivo. EMBO J. 11:1373–1382.
  • Kavanaugh, W. M., A. Klippel, J. A. Escobedo, and L. T. Williams. 1992. Modification of the 85-kilodalton subunit of phosphatidylinositol-3 kinase in platelet-derived growth factor- stimulated cells. Mol. Cell. Biol. 12:3415–3424.
  • Kaziro, Y., H. Itoh, T. Kozasa, M. Nakafuku, and T. Satoh. 1991. Structure and function of signal-transducing GTP-binding proteins. Annu. Rev. Biochem. 60:349–400.
  • Kazlauskas, A., and J. A. Cooper. 1989. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58:1121–1133.
  • Kazlauskas, A., C. Ellis, T. Pawson, and J. A. Cooper. 1990. Binding of GAP to activated PDGF receptors. Science 247:1578–1581.
  • Kazlauskas, A., A. Kashishian, J. A. Cooper, and M. Valius. 1992. GTPase-activating protein and phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor receptor β subunit. Mol. Cell. Biol. 12:2534–2544.
  • Koch, C. A., D. Anderson, M. F. Moran, C. Ellis, and T. Pawson. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674.
  • Leevers, S. J., and C. J. Marshall. 1992. Activation of extracellular signal-regulated kinase, ERK2, by p21ras oncoprotein. EMBO J. 11:569–574.
  • Li, B., D. Kaplan, H. Kung, and T. Kamata. 1992. Nerve growth factor stimulation of the Ras-guanine nucleotide exchange factor and GAP activities. Science 256:1456–1459.
  • Lowenstein, E. J., R. J. Daly, A. G. Batzer, W. Li, B. Margolis, R. Lammers, A. Ullrich, E. Y. Skolnik, D. Bar-Sagi, and J. Schlessinger. 1992. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70:431–442.
  • Margolis, B., N. Li, M. Mohammadi, D. R. Hurwitz, A. Zilberstein, A. Ullrich, T. Pawson, and J. Schlessinger. 1990. The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-γ. EMBO J. 9:4375–4380.
  • Martegani, E., M. Vanoni, R. Zippel, P. Cocceti, R. Brambilla, C. Ferrari, E. Sturani, and L. Alberghine. 1992. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J. 11:2151–2157.
  • Medema, R. H., B. M. T Burgering, and J. L. Bos. 1991. Insulin-induced p21ras activation does not require protein kinase C, but a protein sensitive to phenylarsine oxide. J. Biol. Chem. 266:21186–21189.
  • Meisenhelder, J., P. Suh, S. G. Rhee, and T. Hunter. 1989. Phospholipase C-γ is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57:1109–1122.
  • Miyajima, A., T. Kitamura, N. Harada, T. Yokota, and K. Arai. 1992. Cytokine receptors and signal transduction. Annu. Rev. Immunol. 10:295–331.
  • Molloy, C. J., D. P. Bottaro, T. P. Fleming, M. S. Marshall, J. B. Gibbs, and S. A. Aaronson. 1989. PDGF induction of tyrosine phosphorylation of GTPase activating protein. Nature (London) 342:711–714.
  • Molloy, C. J., T. P. Fleming, D. P. Bottaro, A. Cuadrado, and S. A. Aaronson. 1992. Platelet-derived growth factor stimulation of GTPase-activating protein tyrosine phosphorylation in control and c-Ha-ras-expressing NIH 3T3 cells correlates with p21ras activation. Mol. Cell. Biol. 12:3903–3909.
  • Mulcahy, L. S., M. R. Smith, and D. W. Stacey. 1985. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature (London) 313:241–243.
  • Mulder, K. M., and S. L. Morris. 1992. Activation of p21ras by transforming growth factor β in epithelial cells. J. Biol. Chem. 267:5029–5031.
  • Muroya, K., S. Hattori, and S. Nakamura. 1992. Nerve growth factor induces rapid accumulation of the GTP-bound form of p21ras in rat pheochromocytoma PC12 cells. Oncogene 7:277–281.
  • Nakafuku, M., T. Satoh, and Y. Kaziro. 1992. Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin-6, induce an accumulation of an active Ras · GTP complex in rat pheochromocytoma PC12 cells. J. Biol. Chem. 267:19448–19454.
  • Osterop, A. P. R. M., R. H. Medema, J. L. Bos, G. C. M. V. D. Zon, D. E. Moller, J. S. Flier, W. Möller, and J. A. Maassen. 1992. Relation between the insulin receptor number in cells, autophosphorylation and insulin-stimulated Ras · GTP formation. J. Biol. Chem. 267:14647–14653.
  • Pazin, M. J., and L. T. Williams. 1992. Triggering signaling cascades by receptor tyrosine kinases. Trends Biochem. Sci. 17:374–378.
  • Pomerance, M., F. Schweighoffer, B. Tocque, and M. Pierre. 1992. Stimulation of mitogen-activated protein kinase by oncogenic Ras p21 in Xenopus oocytes. Requirement for Ras p21- GTPase activating protein interaction. J. Biol. Chem. 267:16155–16160.
  • Qui, M., and S. H. Green. 1991. NGF and EGF rapidly activate p21ras in PC12 cells by distinct, convergent pathways involving tyrosine phosphorylation. Neuron 7:937–946.
  • Robbins, D. J., M. Cheng, E. Zhen, C. A. Vanderbilt, L. A. Feig, and M. H. Cobb. 1992. Evidence for a Ras-dependent extracellular signal-regulated protein kinase (ERK) cascade. Proc. Natl. Acad. Sci. USA 89:6924–6928.
  • Rönnstrand, L., S. Mori, A. Arridsson, A. Eriksson, C. Wernstedt, U. Hellman, L. Claesson-Welsh, and C. Heldin. 1992. Identification of two C-terminal autophosphorylation sites in the PDGF β-receptor: involvement in the interaction with phospholipase C-γ. EMBO J. 11:3911–3919.
  • Rozakis-Adcock, M., J. McGlade, G. Mbamalu, G. Pelicci, R. Daly, W. Li, A. Batzer, S. Thomas, J. Brugge, P. G. Pelicci, J. Schlessinger, and T. Pawson. 1992. Association of the She and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature (London) 360:689–692.
  • Satoh, T., M. Endo, M. Nakafuku, T. Akiyama, T. Yamamoto, and Y. Kaziro. 1990. Accumulation of p21ras · GTP in response to stimulation with epidermal growth factor and oncogene products with tyrosine kinase activity. Proc. Natl. Acad. Sci. USA 87:7926–7929.
  • Satoh, T., M. Endo, M. Nakafuku, S. Nakamura, and Y. Kaziro. 1990. Platelet-derived growth factor stimulates formation of active p21ras · GTP complex in Swiss mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 87:5993–5997.
  • Satoh, T., Y. Minami, T. Kono, K. Yamada, A. Kawahara, T. Taniguchi, and Y. Kaziro. 1992. Interleukin 2-induced activation of Ras requires two domains of interleukin 2 receptor β subunit, the essential region for growth stimulation and Lck-binding domain. J. Biol. Chem. 267:25423–25427.
  • Satoh, T., M. Nakafuku, and Y. Kaziro. 1992. Function of Ras as a molecular switch in signal transduction. J. Biol. Chem. 267:24149–24152.
  • Satoh, T., M. Nakafuku, A. Miyajima, and Y. Kaziro. 1991. Involvement of ras p21 protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4. Proc. Natl. Acad. Sci. USA 88:3314–3318.
  • Satoh, T., Y. Uehara, and Y. Kaziro. 1992. Inhibition of interleukin 3 and granulocyte-macrophage colony-stimulating factor stimulated increase of active Ras · GTP by herbimycin A, a specific inhibitor of tyrosine kinases. J. Biol. Chem. 267:2537–2541.
  • Serth, J., W. Weber, M. Frech, A. Wittinghofer, and A. Pingoud. 1992. Binding of the H-ras p21 GTPase activating protein by the activated epidermal growth factor receptor leads to inhibition of the p21 GTPase activity in vitro. Biochemistry 31:6361–6365.
  • Shibuya, E. K., A. J. Polverino, E. Chang, M. Wigler, and J. V. Ruderman. 1992. Oncogenic Ras triggers the activation of 42-kDa mitogen-activated protein kinase in extracts of quiescent Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89:9831–9835.
  • Shou, C., C. L. Farnsworth, B. G. Neel, and L. A. Feig. 1992. Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature (London) 358:351–354.
  • Sjölander, A., K. Yamamoto, B. E. Huber, and E. G. Lapetina. 1991. Association of p21ras with phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA 88:7908–7912.
  • Thomas, S. M., M. DeMarco, G. D’Arcangelo, S. Halegoua, and J. S. Brugge. 1992. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68:1031–1040.
  • Torti, M., K. B. Marti, D. Altschuler, K. Yamamoto, and E. G. Lapetina. 1992. Erythropoietin induces p21ras activation and p120GAP tyrosine phosphorylation in human erythroleukemia cells. J. Biol. Chem. 267:8293–8298.
  • Valius, M., C. Bazenet, and A. Kazlauskas. 1993. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor β subunit and are required for binding of phospholipase Cγ and a 64-kilodalton protein, respectively. Mol. Cell. Biol. 13:133–143.
  • Wei, W., R. D. Mosteller, P. Sanyal, E. Gonzales, D. McKinney, C. Dasgupta, P. Li, B. Liu, and D. Broek. 1992. Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89:7100–7104.
  • Williams, L. T. 1989. Signal transduction by the platelet-derived growth factor receptor. Science 243:1564–1570.
  • Wood, K. W., C. Sarnecki, T. M. Roberts, and J. Blenis. 1992. ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68:1041–1050.
  • Zhang, K., A. G. Papageorge, and D. R. Lowy. 1992. Mechanistic aspects of signaling through Ras in NIH 3T3 cells. Science 257:671–674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.