8
Views
26
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Substrate Length Requirements for Efficient Mitotic Recombination in Saccharomyces cerevisiae

, &
Pages 3937-3950 | Received 30 Nov 1992, Accepted 09 Apr 1993, Published online: 31 Mar 2023

REFERENCES

  • Aguilera, A., and H. L. Klein. 1989. Yeast intrachromosomal recombination: long gene conversion tracts are preferentially associated with reciprocal exchange and require the RAD1 and RAD3 gene products. Genetics 123:683–694.
  • Ahn, B.-Y., K. J. Dornfeld, T. J. Fagrelius, and D. M. Livingston. 1988. Effect of limited homology on gene conversion in a Saccharomyces cerevisiae plasmid recombination system. Mol. Cell. Biol. 8:2442–2448.
  • Ahn, B.-Y., and D. M. Livingston. 1986. Mitotic gene conversion lengths, coconversion patterns, and the incidence of reciprocal recombination in a Saccharomyces cerevisiae plasmid system. Mol. Cell. Biol. 6:3685–3693.
  • Baltimore, D. 1981. Gene conversion: some implications for immunoglobulin genes. Cell 24:592–594.
  • Bishop, D. K., and R. D. Kolodner. 1986. Repair of heteroduplex plasmid DNA after transformation into Saccharomyces cerevisiae. Mol. Cell. Biol. 6:3401–3409.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Carpenter, A. T. C.. 1987. Gene conversion, recombination nodules, and the initiation of meiotic synapsis. BioEssays 6:232–236.
  • Edelman, G. M., and J. A. Gaily. 1970. Arrangement and evolution of eukaryotic genes, p. 962-972. In F. O. Schmitt (ed.), The neurosciences: second study program. Rockefeller University Press, New York.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Holliday, R. 1964. A mechanism for gene conversion in fungi. Genet. Res. 5:282–304.
  • Jinks-Robertson, S., and T. D. Petes. 1986. Chromosomal trans-locations generated by high-frequency meiotic recombination between repeated yeast genes. Genetics 114:731–752.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Judd, S. R., and T. D. Petes. 1988. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics 118:401–410.
  • Kupiec, M., and T. D. Petes. 1988. Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2942–2954.
  • Lea, D. E., and C. A. Coulson. 1949. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–284.
  • Lichten, M., R. H. Sorts, and J. E. Haber. 1987. Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics 115:233–246.
  • Lichten, M., and J. E. Haber. 1989. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123:261–268.
  • Lin, F.-L., K. Sperle, and N. Sternberg. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4:1020–1034.
  • Liskay, R. M., A. Letsou, and J. L. Stachelek. 1987. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115:161–167.
  • Meselson, M. S., and C. M. Radding. 1975. A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72:358–361.
  • Muster-Nassal, C., and R. Kolodner. 1986. Mismatch correction catalyzed by cell-free extracts of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83:7618–7622.
  • Petes, T. D., and C. W. Hill. 1988. Recombination between repeated genes in microorganisms. Annu. Rev. Genet. 22:147–168.
  • Petes, T. D., R. E. Malone, and L. S. Symington. 1991. Recom-bination in yeast, p. 407–521. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
  • Radman, M. 1991. Avoidance of inter-repeat recombination by sequence divergence and a mechanism of neutral evolution. Biochimie 73:357–361.
  • Rose, M., and D. Botstein. 1983. Structure and function of the yeast URA3 gene: differentially regulated expression of hybrid β-galactosidase from overlapping coding sequences in yeast. J. Mol. Biol. 170:883–904.
  • Rose, M., P. Grisafi, and D. Botstein. 1984. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene 29:113–124.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rothstein, R.. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Rubnitz, J., and S. Subramani. 1984. The minimum amount of homology required for homologous recombination in mamma-lian cells. Mol. Cell. Biol. 4:2253–2258.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schiestl, R. H., and R. D. Gietz. 1989. High efficiency transfor-mation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339–346.
  • Shen, P., and H. V. Huang. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441–457.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–20.
  • Singer, B. S., L. Gold, P. Gauss, and D. H. Doherty. 1982. Determination of the amount of homology required for recom-bination in bacteriophage T4. Cell 31:25–33.
  • Smithies, O., and P. A. Powers. 1986. Gene conversions and their relation to homologous chromosome pairing. Philos. Trans. R. Soc. Lond. B 312:291–302.
  • Steele, D. F., and S. Jinks-Robertson. Time-dependent mitotic recombination in Saccharomyces cerevisiae. Curr. Genet., in press.
  • Sugawara, N., and J. E. Haber. 1992. Characterization of double-strand break-induced recombination: homology require-ments and single-stranded DNA formation. Mol. Cell. Biol. 12:563–575.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Thomas, B. J., and R. Rothstein. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630.
  • Thomas, C. A., Jr. 1966. Recombination of DNA molecules. Prog. Nucleic Acid Res. Mol. Biol. 4:315–348.
  • Voelkel-Meiman, K., and G. S. Roeder. 1990. Gene conversion tracts stimulated by HOT1 -promoted transcription are long and continuous. Genetics 126:851–867.
  • Wallis, J. W., G. Chrebet, G. Brodsky, M. Rolfe, and R. Rothstein. 1989. A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell 58:409–419.
  • Watt, V. M., C. J. Ingles, M. S. Urdea, and W. J. Rutter. 1985. Homology requirements for recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 82:4768–4772.
  • White, M. A., P. Detloff, M. Strand, and T. D. Petes. 1992. A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the HIS4 locus in yeast. Curr. Genet. 21:109–116.
  • Yuan, L.-W., and R. L. Keil. 1990. Distance-independence of mitotic intrachromosomal recombination in Saccharomyces cerevisiae. Genetics 124:263–273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.