2
Views
15
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Both the SH2 and SH3 Domains of Human CRK Protein Are Required for Neuronal Differentiation of PC12 Cells

, , , , , & show all
Pages 4409-4415 | Received 21 Dec 1992, Accepted 12 Apr 1993, Published online: 31 Mar 2023

REFERENCES

  • Anderson, D. D., R. P. Beckmann, E. H. Harms, K. Nakamura, and M. J. Weber. 1981. Biological properties of "partial" transformation mutants of Rous sarcoma virus and character-ization of their pp60src kinase. J. Virol. 37:445–458.
  • Anderson, S. K., and D. J. Fujita. 1987. Morphf mutants of Rous sarcoma virus: nucleotide sequencing analysis suggests that a class of morphf mutants was generated through splicing of a cryptic intron. J. Virol. 61:1893–1900.
  • Ansorge, W., and R. Pepperkok. 1988. Performance of an automated system for capillary microinjection into living cells. J. Biochem. Biophys. Methods 16:283–292.
  • Bar-Sagi, D., and J. R. Feramisco. 1985. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell 42:841–848.
  • Ben-Neriah, Y., A. Bernards, M. Paskind, G. Q. Daley, and D. Baltimore. 1986. Alternative 5' exons in c-abl mRNA. Cell 44:577–586.
  • Black, M. M., J. M. Aletta, and L. A. Greene. 1986. Regulation of microtubule composition and stability during nerve growth factor-promoted neurite outgrowth. J. Cell Biol. 103:545–557.
  • Cantley, L. C, K. R. Auger, C. Carpenter, B. Duckworth, A. Graziani, R. Kapeller, and S. Soltoff. 1991. Oncogenes and signal transduction. Cell 64:281–302.
  • Chou, M. M., J. E. Fajardo, and H. Hanafusa. 1992. The SH2-containing and SH3-containing Nek protein transforms mammalian fibroblasts in the absence of elevated phosphoty-rosine levels. Mol. Cell. Biol. 12:5834–5842.
  • Cicchetti, P., B. J. Mayer, G. Thiel, and D. Baltimore. 1992. Identification of protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Nature (London) 257:803–806.
  • Clark, S. G., M. J. Stern, and H. R. Horvitz. 1992. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature (London) 356:340–344.
  • Dichter, M. A., A. S. Tischler, and L. A. Greene. 1977. Nerve growth factor-induced increase in electrical excitability and acetylcholine sensitivity of a rat pheochromocytoma cell line. Nature (London) 268:501–504.
  • Drubin, D. G., S. C. Feinstein, E. M. Shooter, and M. W. Kirschner. 1985. Nerve growth factor-induced neurite out-growth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J. Cell Biol. 101:1799–1807.
  • Drubin, D. G., J. Mulholland, Z. Zhu, and D. Botstein. 1990. Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature (London) 343:288–290.
  • Escobedo, J. A., D. R. Kaplan, W. M. Kavanaugh, C. W. Turck, and L. T. Williams. 1991. A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol. Cell. Biol. 11:1125–1132.
  • Espino, P. C, R. Harvey, R. L. Schweickgardt, G. A. White, A. E. Smith, and S. H. Cheng. 1990. The amino-terminal region of pp60c-src has a modulatory role and contains multiple sites of tyrosine phosphorylation. Oncogene 5:283–293.
  • Franz, W. M., P. Berger, and J. Y. J. Wang. 1989. Deletion of an N-terminal regulatory domain of the c-abl tyrosine kinase activates its oncogenic potential. EMBO J. 8:137–147.
  • Greene, L. A., and A. S. Tischler. 1976. Establishment of a nonadrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428.
  • Hagag, N., S. Halegous, and M. Viola. 1986. Inhibition of growth factor-induced differentiation of PC12 cells by microinjection of antibody to ras p21. Nature (London) 319:680–682.
  • Jackson, P., and D. Baltimore. 1989. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. EMBO J. 8:449–456.
  • Jung, G., E. D. Korn, and J. A. I. Hammer. 1987. The heavy chain of Acanthamoeba myosin IB is a fusion of myosin-like and non-myosin-like sequences. Proc. Natl. Acad. Sci. USA 84:6720–6724.
  • Kato, J.-Y., T. Takeya, C. Grandori, H. Iba, J. B. Levy, and H. Hanafusa. 1986. Amino acid substitutions sufficient to convert the nontransforming p60c-src protein to a transforming protein. Mol. Cell. Biol. 6:4155–4160.
  • Kazlauskas, A., C. Ellis, T. Pawson, and J. A. Cooper. 1990. Binding of GAP to activated PDGF receptors. Science 247:1578–1581.
  • Kitamura, N., and M. Yoshida. 1983. Small deletion in src of Rous sarcoma virus modifying transformation phenotypes: identification of 207-nucleotide deletion and its smaller product with protein kinase activity. J. Virol. 46:985–992.
  • Koch, C. A., D. Anderson, M. F. Moran, C. Ellis, and T. Pawson. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674.
  • Kremer, N. E., G. D'Arcangelo, S. M. Thomas, M. DeMarco, J. S. Brugge, and S. Halegoua. 1991. Signal transduction by nerve growth factor and fibroblast growth factor in PC12-cells requires a sequence of Src and Ras actions. J. Cell Biol. 115:809–819.
  • Lehmann, J. M., G. Riethmuller, and J. P. Johnson. 1990. Nek, a melanoma cDNA encoding a cytoplasmic protein consisting of the src homology units SH2 and SH3. Nucleic Acids Res. 18:1048.
  • Li, W., P. Hu, E. Y. Skolnik, A. Ullrich, and J. Schlessinger. 1992. The SH2 and SH3 domain-containing Nek protein is oncogenic and a common target for phosphorylation by different surface receptors. Mol. Cell. Biol. 12:5824–5833.
  • Lowenstein, E. J., R. J. Daly, A. G. Batzer, W. Li, B. Margolis, R. Lammers, A. Ullrich, E. Y. Skolnik, D. Barsagi, and J. Schlessinger. 1992. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to Ras signaling. Cell 70:431–442.
  • Matsuda, M., B. J. Mayer, Y. Fukui, and H. Hanafusa. 1990. Binding of oncoprotein, P47gag-crk, to a broad range of phospho-tyrosine-containing proteins. Science 248:1537–1539.
  • Matsuda, M., B. J. Mayer, and H. Hanafusa. 1991. Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins. Mol. Cell. Biol. 11:1607–1613.
  • Matsuda, M., S. Nagata, S. Tanaka, K. Nagashima, and T. Kurata. 1993. Structural requirement of the CRK SH2 region for the binding to phosphotyrosine-containing proteins: evidence by the reactivity to monoclonal antibodies. J. Biol. Chem. 268:4441–4446.
  • Matsuda, M., C. T. Reichman, and H. Hanafusa. 1992. Biolog-ical and biochemical activity of v-Crk chimeras containing the SH2/SH3 regions of phosphatidylinositol-specific phospholipase C-7 and Src. J. Virol. 66:115–121.
  • Matsuda, M., S. Tanaka, S. Nagata, A. Kojima, T. Kurata, and M. Shibuya. 1992. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol. 12:3482–3489.
  • Matuoka, K., M. Shibata, A. Yamakawa, and T. Takenawa. 1992. Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH)-2 and 2 SH3 domains, from human and rat cDNA libraries. Proc. Natl. Acad. Sci. USA 89:9015–9019.
  • Mayer, B. J., M. Hamaguchi, and H. Hanafusa. 1988. A novel viral oncogene with structural similarity to phospholipase C. Nature (London) 332:272–275.
  • Mayer, B. J., M. Hamaguchi, and H. Hanafusa. 1989. Charac-terization of P47gag-crk, a novel oncogene product with sequence similarity to a putative modulatory domain of protein-tyrosine kinases and phospholipase C. Cold Spring Harbor Symp. Quant. Biol. 53:907–914.
  • Mayer, B. J., and H. Hanafusa. 1990. Association of the v-crk oncogene product with phosphotyrosine-containing proteins and protein kinase activity. Proc. Natl. Acad. Sci. USA 87:2638–2642.
  • Mayer, B. J., and H. Hanafusa. 1990. Mutagenic analysis of the v-crk oncogene: requirement for SH2 and SH3 domains and correlation between increased cellular phosphotyrosine and transformation. J. Virol. 64:3581–3589.
  • Meisenhelder, J., and T. Hunter. 1992. The SH2/SH3 domain-containing protein Nek is recognized by certain anti-phospho-lipase C-γ1 monoclonal antibodies, and its phosphorylation on tyrosine is stimulated by platelet-derived growth factor and epidermal growth factor treatment. Mol. Cell. Biol. 12:5843–5856.
  • Muroya, K., S. Hattori, and S. Nakamura. 1992. Nerve growth factor induces rapid accumulation of the GTP-bound form of p21ras in rat pheochromocytoma PC12 cells. Oncogene 7:277–281.
  • Musacchio, A., M. Noble, R. Pauptit, R. Wierenga, and M. Saraste. 1992. Crystal structure of a Src-homology 3 (SH3) domain. Nature (London) 359:851–855.
  • Nagata, S., K. Yamamoto, Y. Ueno, T. Kurata, and J. Chiba. 1991. Preferential generation of monoclonal IgG-producing hy-bridomas by use of vesicular stomatitis virus-mediated cell fusion. Hybridoma 10:369–378.
  • Noda, M., M. Ko, A. Ogura, D. Liu, T. Amano, T. Takano, and Y. Ikawa. 1985. Sarcoma viruses carrying ras oncogenes in-duced differentiation-associated properties in a neuronal cell line. Nature (London) 318:73–75.
  • Park, D., and S. G. Rhee. 1992. Phosphorylation of Nek in response to a variety of receptors, phorbol myristate acetate, and cyclic AMP. Mol. Cell. Biol. 12:5816–5823.
  • Pawson, T. 1988. Non-catalytic domains of cytoplasmic protein-tyrosine kinases: regulatory elements in signal transduction. Oncogene Res. 3:491–495.
  • Pollock, J. D., M. Krempin, and B. Rudy. 1990. Differential effects of NGF, FGF, EGF, cAMP, and dexamethasone on neurite outgrowth and sodium channel expression in PC12 cells. J. Neurosci. 10:2626–2637.
  • Potts, W. M., A. B. Reynolds, T. J. Lansing, and J. T. Parsons. 1988. Activation of pp60c-src transforming potential by mutations altering the structure of an amino terminal domain containing residues 90-95. Oncogene Res. 3:343–355.
  • Reichman, C. T., B. J. Mayer, S. Keshau, and H. Hanafusa. 1992. The product of the cellular crk gene consists primarily of SH2 and SH3 regions. Cell Growth Differ. 3:451–460.
  • Rozakis-Adcock, M., J. Mcglade, G. Mbamalu, G. Pelicci, R. Daly, W. Li, A. Batzer, S. Thomas, J. Brugge, P. G. Pelicci, J. Schlessinger, and T. Pawson. 1992. Association of the She and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature (London) 360:689–692.
  • Satoh, T., S. Nakamura, and Y. Kaziro. 1987. Induction of neurite formation in PC12 cells by microinjection of proto-oncogenic Ha-ras protein preincubated with guanosine-5'-O-(3-thiotriphosphate). Mol. Cell. Biol. 7:4553–4556.
  • Seidel-Dugan, C., B. E. Meyer, S. M. Thomas, and J. S. Brugge. 1992. Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src. Mol. Cell. Biol. 12:1835–1845.
  • Skolnik, E. Y., B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger. 1991. Clon-ing of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine ki-nases. Cell 65:83–90.
  • Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40.
  • Smith, M. R., S. J. DeGudicibus, and D. W. Stacey. 1986. Requirement for c-ras proteins during viral oncogene transfor-mation. Nature (London) 320:540–543.
  • Stahl, M. L., C. R. Ferenz, K. L. Kelleher, R. W. Kriz, and J. L. Knopf. 1988. Sequence similarity of phospholipase C with the non-catalytic region of src. Nature (London) 332:269–272.
  • Szeberenyi, J., H. Cai, and G. M. Cooper. 1990. Effect of a dominant inhibitory Ha-ras mutation on neuronal differentiation of PC12 cells. Mol. Cell. Biol. 10:5324–5332.
  • Tanaka, S., M. Matsuda, T. Kurata, K. Nagashima, Y. Shizawa, and Y. Fukui. 1993. Structure of 85 kDa subunit of human phosphatidylinositol 3-kinase analyzed by monoclonal antibod-ies. Jpn. J. Cancer Res. 84:279–289.
  • Ullrich, A., and J. Schlessinger. 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212.
  • Wasenius, V.-M., M. Saraste, P. Salven, M. Eramaa, L. Holm, and V.-P. Lento. 1989. Primary structure of the brain α-spectrin. J. Cell Biol. 108:79–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.