1
Views
3
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Distal Enhancer Implicated in the Developmental Regulation of the Tyrosine Aminotransferase Gene Is Bound by Liver-Specific and Ubiquitous Factors

&
Pages 4494-4504 | Received 18 Feb 1993, Accepted 30 Apr 1993, Published online: 31 Mar 2023

REFERENCES

  • Becker, P. B., S. Ruppert, and G. Schutz. 1987. Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell 51:435–443.
  • Becker, P. B., and G. Schutz. 1988. Genomic footprinting. p. 1–19. In J. K. Setlow (ed.), Genetic engineering, principles and methods, vol. 10. Plenum Press, New York.
  • Beermann, F., E. Hummler, E. Schmid, and G. Schutz. Perinatal activation of a tyrosine aminotransferase fusion gene does not occur in albino lethal mice. Mech. Dev., in press.
  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59.
  • Bird, A. 1992. The essentials of DNA methylation. Cell 70:5–8.
  • Boshart, M., M. Kluppel, A. Schmidt, G. Schutz, and B. Luckow. 1991. Reporter constructs with low background activity utilizing the cat gene. Gene 110:129–130.
  • Boshart, M., F. Weih, A. Schmidt, R. E. K. Fournier, and G. Schutz. 1990. A cyclic AMP response element mediates repression of tyrosine aminotransferase gene expression by the tissue-specific extinguisher locus Tse-1. Cell 61:905–916.
  • Chen, E. Y., and P. H. Seeburg. 1985. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170.
  • Cheyette, T. E., T. Ip, S. Faber, Y. Matsui, and R. Chalkley. 1992. Characterization of the factors binding to a PEPCK gene upstream hypersensitive site with LCR activity. Nucleic Acids Res. 20:3427–3433.
  • Chu, G., H. Hayakawa, and P. Berg. 1987. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15:1311–1326.
  • Costa, R. H., D. R. Grayson, and J. E. Darnell. 1989. Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and al-antitrypsin genes. Mol. Cell. Biol. 9:1415–1425.
  • Descombes, P. M., M. Chojkier, S. Lichtsteiner, E. Falvey, and U. Schibler. 1990. LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein. Genes Dev. 4:1541–1551.
  • Descombes, P. M., and U. Schibler. 1991. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67:569–579.
  • De Simone, V., and R. Cortese. 1991. Transcriptional regulation of liver-specific gene expression. Curr. Opin. Cell Biol. 3:960–965.
  • de Wet, J. R., K. V. Wood, M. DeLuca, D. R. Helinski, and S. Subramani. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7:725–737.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Felsenfeld, G. 1992. Chromatin as an essential part of the transcriptional mechanism. Nature (London) 355:219–224.
  • Fromm, M., L. P. Taylor, and V. Walbot. 1985. Expression of genes transferred into monocot and dicot plant cells by electro-poration. Proc. Natl. Acad. Sci. USA 82:5824–5828.
  • Ganss, R., F. Weih, and G. Schutz. Unpublished data.
  • Glass, C. K., O. V. Devary, and M. G. Rosenfeld. 1990. Multiple cell type-specific proteins differentially regulate target sequence recognition by the a retinoic acid receptor. Cell 63:729–738.
  • Godbout, R., R. Ingram, and S. M. Tilghman. 1988. Fine-structure mapping of the three mouse α-fetoprotein gene enhancers. Mol. Cell. Biol. 8:1169–1178.
  • Gonzalez, G. A., and M. R. Montminy. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyl-transferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Grange, T., J. Roux, G. Rigaud, and R. Pictet. 1991. Cell-type-specific activity of two glucocorticoid responsive units of rat tyrosine aminotransferase gene is associated with multiple binding sites for C/EBP and a novel liver-specific nuclear factor. Nucleic Acids Res. 19:131–139.
  • Granner, D. K., and E. G. Beale. 1985. Regulation of the synthesis of tyrosine aminotransferase and phosphoenolpyru-vate carboxykinase by glucocorticoid hormones. p. 89–138. In G. Litwack (ed.), Biochemical actions of hormones XII. Academic Press, New York.
  • Greengard, O.. 1970. The developmental formation of enzymes in rat liver. p. 53–85. In G. Litwack (ed.), Mechanisms of hormone action, vol. 1. Academic Press, New York.
  • Hammer, R. E., R. Krumlauf, S. A. Camper, R. L. Brinster, and S. M. Tilghman. 1987. Diversity of alpha-fetoprotein gene expression in mice is generated by a combination of separate enhancer elements. Science 235:53–58.
  • Hargrove, J. L., and D. K. Granner. 1985. Biosynthesis and intracellular processing of tyrosine aminotransferase. p. 511–532. In P. Christen and P. E. Metzler (ed.), Transaminases. John Wiley & Sons, Inc., New York.
  • Hashimoto, S., W. Schmid, and G. Schutz. 1984. Transcriptional activation of the rat liver tyrosine aminotransferase gene by cAMP. Proc. Natl. Acad. Sci. USA 81:6637–6641.
  • Hunter, T., and M. Karin. 1992. The regulation of transcription by phosphorylation. Cell 70:375–387.
  • Ip, T. V., D. Poon, D. Stone, D. K. Granner, and R. Chalkley. 1990. Interaction of a liver-specific factor with an enhancer 4.8 kilobases upstream of the phosphoenolpyruvate carboxykinase gene. Mol. Cell. Biol. 10:3770–3781.
  • Jantzen, H.-M., U. Strahle, B. Gloss, F. Stewart, W. Schmid, M. Boshart, R. Miksicek, and G. Schutz. 1987. Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 49:29–38.
  • Johnson, P. F., and S. L. McKnight. 1989. Eukaryotic transcriptional regulatory proteins. Annu. Rev. Biochem. 58:799–839.
  • Kastner, K., and G. Schutz. Unpublished data.
  • Killary, A. M., and R. E. K. Fournier. 1984. A genetic analysis of extinction: trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells. Cell 38:523–534.
  • Killary, A. M., T. G. Lugo, and R. E. K. Fournier. 1984. Isolation of thymidine kinase deficient rat hepatoma cells by selection with bromo-deoxyuridine, Hoechst 33258, and visible light. Biochem. Genet. 22:201–213.
  • Kuo, C. J., P. B. Conley, L. Chen, F. M. Sladek, J. E. Darnell, Jr., and G. R. Crabtree. 1992. A transcriptional hierarchy involved in mammalian cell-type specification. Nature (London) 355:457–461.
  • Lai, E., V. R. Prezioso, E. Smith, O. Litvin, R. H. Costa, and J. E. Darnell, Jr. 1990. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 4:1427–1436.
  • Lai, E., V. R. Prezioso, W. Tao, W. S. Chen, and J. E. Darnell, Jr. 1991. Hepatocyte nuclear factor 3a belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev. 5:416–427.
  • Landschulz, W. H., P. F. Johnson, E. Y. Adashi, B. J. Graves, and S. L. McKnight. 1988. Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev. 2:786–800.
  • Lee, W., P. Mitchell, and R. Tjian. 1987. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49:741–752.
  • Lewin, B. 1990. Commitment and activation at Pol II promoters: a tail of protein-protein interactions. Cell 61:1161–1164.
  • Maniatis, T., S. Goodbourn, and J. A. Fischer. 1987. Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Mueller, C. R., P. Maire, and U. Schibler. 1990. DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscrip-tionally. Cell 61:279–291.
  • Müller, G., S. Ruppert, E. Schmid, and G. Schutz. 1988. Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J. 7:2723–2730.
  • Nichols, M., F. Weih, W. Schmid, C. DeVack, E. Kowenz-Leutz, B. Luckow, M. Boshart, and G. Schutz. 1992. Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. EMBO J. 11:3337–3346.
  • Nitsch, D. 1991. Ph.D. thesis. Fachbereich Biologie. Universitat Heidelberg, Heidelberg, Germany.
  • Nitsch, D., M. Boshart, and G. Schutz. Activation of the tyrosine aminotransferase gene is dependent on synergy between liver-specific and hormone-responsive elements. Proc. Natl. Acad. Sci. USA, in press.
  • Nitsch, D., M. Boshart, and G. Schutz. 1993. Extinction of tyrosine aminotransferase gene activity in somatic cell hybrids involves modification and loss of several essential transcriptional activators. Genes Dev. 7:308–319.
  • Nitsch, D., S. Ruppert, G. Kelsey, A. Schedl, F. Weih, A. F. Stewart, U. Strahle, C. DeVack, A. Reik, M. Boshart, and G. Schutz. 1991. Hormonal and liver-specific control of expression of the tyrosine aminotransferase gene. p. 223–234. In P. Cohen and J. G. Foulkes (ed.), The hormonal control regulation of gene transcription. Elsevier Science Publishers B.V., The Netherlands.
  • Nitsch, D., A. F. Stewart, M. Boshart, R. Mestril, F. Weih, and G. Schutz. 1990. Chromatin structures of the rat tyrosine aminotransferase gene relate to the function of its cis-acting elements. Mol. Cell. Biol. 10:3334–3342.
  • Öfverstedt, L.-G., K. Hammarstrom, N. Balgobin, S. Hjerten, U. Pettersson, and J. Chattopadhyaya. 1984. Rapid and quantitative recovery of DNA fragments from gels by displacement electrophoresis (isotachophoresis). Biochim. Biophys. Acta 782:120–126.
  • Pani, L., D. G. Overdier, A. Porcella, X. Qian, E. Lai, and R. H. Costa. 1992. Hepatocyte nuclear factor 3(3 contains two transcriptional activation domains, one of which is novel and conserved with the Drosophila fork head protein. Mol. Cell. Biol. 12:3723–3732.
  • Pinkert, C. A., D. M. Ornitz, R. L. Brinster, and R. D. Palmiter. 1987. An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. 1:268–276.
  • Reik, A., G. Schutz, and A. F. Stewart. 1991. Glucocorticoids are required for establishment and maintenance of an alteration in chromatin structure: induction leads to a reversible disruption of nucleosomes over an enhancer. EMBO J. 10:2569–2576.
  • Rigaud, G., J. Roux, R. Pictet, and T. Grange. 1991. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67:977–986.
  • Ron, D., and J. F. Habener. 1992. CHOP, a novel developmen-tally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6:439–453.
  • Schmid, E., W. Schmid, D. Mayer, B. Jastorff, and G. Schutz. 1987. Transcriptional activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur. J. Biochem. 165:499–506.
  • Schreiber, E., P. Matthias, M. M. Muller, and W. Schaffher. 1989. Rapid detection of octamer binding proteins with "mini-extracts", prepared from a small number of cells. Nucleic Acids Res. 27:6419.
  • Schubart, U. K. 1986. Regulation of gene expression in rat hepatocytes and hepatoma cells by insulin: quantitation of messenger ribonucleic acid's coding for tyrosine aminotransferase, tryptophan oxygenase, and phosphoenolpyruvate carboxykinase. Endocrinology 119:1741–1749.
  • Sladek, F. M., and J. E. Darnell, Jr. 1992. Mechanisms of liver-specific gene expression. Curr. Opin. Genet. Dev. 2:256–259.
  • Stewart, A. F., and G. Schutz. Unpublished data.
  • Svoboda, J. 1960. Presence of a chicken tumor virus in the sarcoma of the adult rat inoculated after birth with Rous sarcoma virus. Nature (London) 186:980–981.
  • Thompson, E. B., G. M. Tomkins, and J. F. Cumin. 1966. Induction of tyrosine α-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc. Natl. Acad. Sci. USA 56:296–303.
  • Tian, J.-M., and U. Schibler. 1991. Tissue-specific expression of the gene encoding hepatocyte nuclear factor 1 may involve hepatocyte nuclear factor 4. Genes Dev. 5:2225–2234.
  • Treacy, M. N., X. He, and M. G. Rosenfeld. 1991. I-POU: a POU-domain protein that inhibits neuron-specific gene activation. Nature (London) 350:577–584.
  • Tsutsumi, K.-I., K. Ito, and K. Ishikawa. 1989. Developmental appearance of transcription factors that regulate liver-specific expression of the aldolase B gene. Mol. Cell. Biol. 9:4923–4931.
  • Weigel, D., and H. Jackie. 1990. The fork head domain: a novel DNA binding motif of eukaryotic transcription factors? Cell 63:455–456.
  • Weih, F., D. Nitsch, A. Reik, G. Schutz, and P. B. Becker. 1991. Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo. EMBO J. 10:2559–2567.
  • Weih, F., A. F. Stewart, M. Boshart, D. Nitsch, and G. Schutz. 1990. In vivo monitoring of a cAMP-stimulated DNA-binding activity. Genes Dev. 4:1437–1449.
  • Weih, F., A. F. Stewart, and G. Schutz. 1988. A novel and rapid method to generate single stranded DNA probes for genomic footprinting. Nucleic Acids Res. 16:1628.
  • Wildeman, A. G., P. Sassone-Corsi, T. Grundstrom, M. Zenke, and P. Chambon. 1984. Stimulation of in vitro transcription from SV40 early promoter by the enhancer involves a specific transacting factor. EMBO J. 3:3129–3133.
  • Zaret, K. S., J.-K. Liu, and C. M. DiPersio. 1990. Site-directed mutagenesis reveals a liver transcription factor essential for the albumin transcriptional enhancer. Proc. Natl. Acad. Sci. USA 87:5469–5473.
  • Ziff, E. B. 1990. Transcription factors: a new family gathers at the cAMP response site. Trends Genet. 6:69–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.