7
Views
15
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Identification and Characterization of a New Mammalian Mitogen-Activated Protein Kinase Kinase, MKK2

, , , , &
Pages 4539-4548 | Received 08 Apr 1993, Accepted 04 May 1993, Published online: 31 Mar 2023

REFERENCES

  • Ann, N. G., R. Seger, R. L. Bratlien, C. D. Diltz, N. K. Tonks, and E. G. Krebs. 1991. Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J. Biol. Chem. 266:4220–4227.
  • Ann, N. G., R. Seger, and E. G. Krebs. 1992. The mitogen-activated protein kinase activator. Curr. Opin. Cell Biol. 4:992–999.
  • Alvarez, E., I. C. Northwood, F. A. Gonzalez, D. A. Latour, A. Seth, C. Abate, T. Curran, and R. J. Davis. 1991. Pro-Leu-Ser/ Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J. Biol. Chem. 266:15277–15285.
  • Anderson, N. G. 1992. Growth hormone activates mitogen-activated protein kinase and S6 kinase and promotes intracellular tyrosine phosphorylation in 3T3-F442A preadipocytes. Biochem. J. 284:549–652.
  • Ashworth, A., S. Nakielny, P. Cohen, and C. Marshall. 1992. The amino acid sequence of a mammalian MAP kinase kinase. Oncogene 7:2555–2556.
  • Aziz, N., J. Wo, J. W. Dubendorff, J. Lipsick, T. Sturgill, and T. P. Bender. c-myb and v-myb are differentially phosphory-lated by p42mapk in vitro. Oncogene, in press.
  • Boulton, T. G., S. H. Nye, D. J. Robbins, N. Y. Ip, E. Radziejewska, S. D. Morgenbesser, R. A. DePinho, N. Panayota-tos, M. H. Cobb, and G. D. Yancopoulos. 1991. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65:663–675.
  • Chen, R. H., C. Sarnecki, and J. Blenis. 1992. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12:915–927.
  • Crews, C. M., A. Alessandrini, and R. L. Erikson. 1992. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–480.
  • Cullen, B. R. 1987. Use of eukaryotic expression technology in the functional analysis of cloned genes. Methods Enzymol. 152:684–704.
  • Dent, P., W. Haser, T. A. Haystead, L. A. Vincent, T. M. Roberts, and T. W. Sturgill. 1992. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257:1404–1407.
  • Dent, P., and T. W. Sturgill. Unpublished data.
  • Dent, P., J. Wu, G. Romero, L. A. Vincent, D. Castle, and T. W. Sturgill. 1993. Activation of the mitogen-activated protein kinase pathway in Triton X-100 disrupted NIH 3T3 cells by p21 ras and in vitro by plasma membranes from NIH 3T3 cells. Mol. Biol. Cell 4:483–493.
  • Ely, C. M., K. M. Oddie, J. S. Litz, A. J. Rossomando, S. B. Kanner, T. W. Sturgill, and S. J. Parsons. 1990. A 42-kDa tyrosine kinase substrate linked to chromaffin cell secretion exhibits an associated MAP kinase activity and is highly related to a 42-kDa mitogen-stimulated protein in fibroblasts. J. Cell Biol. 110:731–742.
  • Errede, B., and D. E. Levin. Yeast and signal transduction. Curr. Opin. Cell Biol., in press.
  • Gille, H., A. D. Sharrocks, and P. E. Shaw. 1992. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature (London) 353:414–417.
  • Grinstein, S., and W. Furuya. 1992. Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associ-ated protein kinase in human neutrophils. J. Biol. Chem. 267:18122–18125.
  • Haystead, C. M. M., J. Wu, P. Gregory, T. W. Sturgill, and T. A. J. Haystead. 1993. Functional expression of a MAP kinase kinase in COS cells and recognition by an anti-STE7/byrl antibody. FEBS Lett. 317:12–16.
  • Haystead, T. A. J., J. E. Weiel, D. W. Litchfield, Y. Tsukitani, E. H. Fischer, and E. G. Krebs. 1990. Okadaic acid mimics the role of insulin in stimulating protein kinase activity in isolated adipocytes. The role of protein phosphatase 2A in attenuation of the signal. J. Biol. Chem. 265:16571–16580.
  • Her, J.H., J. Wu, T. B. Rail, T. W. Sturgill, and M. J. Weber. 1991. Sequence of pp42-MAP kinase, a serine/threonine kinase regulated by tyrosine phosphorylation. Nucleic Acids Res. 19:3743.
  • Howe, L. R., S. J. Leevers, N. Gomez, S. Nakielny, P. Cohen, and C. J. Marshall. 1992. Activation of the MAP kinase pathway by the protein kinase raf. Cell 71:335–342.
  • Kosako, H., E. Nishida, and Y. Gotoh. 1993. cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO J. 12:787–794.
  • Kozak, M. 1990. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87:8301–8305.
  • Kozak, M. 1991. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115:887–903.
  • Kyriakis, J. M., H. App, X. F. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, and J. Avruch. 1992. Raf-1 activates MAP kinase-kinase. Nature (London) 358:417–421.
  • L'Allemain, G., J.-H. Her, J. Wu, T. W. Sturgill, and M. J. Weber. 1992. Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/micro-tubule-associated protein kinase. Mol. Cell. Biol. 12:2222–2229.
  • Lange-Carter, C. A., C. M. Pieiman, A. M. Gardner, K. J. Blumer, and G. L. Johnson. 1993. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260:315–319.
  • Lin, L.-L., M. Wartmann, A. Y. Lin, J. L. Knopf, A. Seth, and R. J. Davis. 1993. cPLA2 is phosphorylated and activated by MAP kinase. Cell 72:269–278.
  • Matsuda, S., Y. Gotoh, and E. Nishida. 1993. Phosphorylation of Xenopus mitogen-activated protein (MAP) kinase kinase kinase and MAP kinase. J. Biol. Chem. 268:3277–3281.
  • Meloche, S., K. Seuwen, G. Pages, and J. Pouyssegur. 1992. Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity. Mol. Endocrinol. 6:845–854.
  • Nori, M., U. S. Vogel, J. B. Gibbs, and M. J. Weber. 1991. Inhibition of v-src-induced transformation by a GTPase-activat-ing protein. Mol. Cell. Biol. 11:2812–2818.
  • Pelech, S. L., and J. S. Sanghera. 1992. MAP kinases: charting the regulatory pathways. Science 257:1355–1356.
  • Pelech, S. L., and J. S. Sanghera. 1992. Mitogen-activated protein kinases: versatile transducers for cell signalling. Trends Biochem. Sci. 17:233–238.
  • Posada, J., N. Yew, N. G. Ann, G. F. Vande Woude, and J. A. Cooper. 1993. Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol. Cell. Biol. 13:2546–2553.
  • Robbins, D. J., M. Cheng, E. Zhen, C. A. Vanderbilt, L. A. Feig, and M. H. Cobb. 1992. Evidence for a Ras-dependent extracellular signal-regulated protein kinase (ERK) cascade. Proc. Natl. Acad. Sci. USA 89:6924–6928.
  • Rossomando, A. J., P. Dent, M. T. Vandenburg, J. Wu, T. W. Sturgill, and D. R. Marshak. Unpublished data.
  • Rossomando, A. J., J. S. Sanghera, L. A. Marsden, M. J. Weber, S. L. Pelech, and T. W. Sturgill. 1991. Biochemical characterization of a family of serine/threonine protein kinases regulated by tyrosine and serine/threonine phosphorylations. J. Biol. Chem. 266:20270–20275.
  • Sanghera, J. S., M. Peter, E. A. Nigg, and S. L. Pelech. 1992. Immunological characterization of avian MAP kinases: evidence for nuclear localization. Mol. Biol. Cell 3:775–787.
  • Seger, R., N. G. Ann, J. Posada, E. S. Munar, A. M. Jensen, J. A. Cooper, M. H. Cobb, and E. G. Krebs. 1992. Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J. Biol. Chem. 267:14373–14381.
  • Seger, R., D. Seger, F. J. Lozeman, N. G. Ann, L. M. Graves, J. S. Campbell, L. Ericsson, M. Harrylock, A. M. Jensen, and E. G. Krebs. 1992. Human T-cell mitogen-activated protein kinase kinases are related to yeast signal transduction kinases. J. Biol. Chem. 267:25628–25631.
  • Seth, A., E. Alvarez, S. Gupta, and R. J. Davis. 1991. A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression. J. Biol. Chem. 266:23512–23514.
  • Seth, A., F. A. Gonzales, S. Gupta, D. L. Raden, and R. J. Davis. 1992. Signal-transduction within the nucleus by mitogen-activated protein kinase. J. Biol. Chem. 267:24796–24804.
  • Stokoe, D., D. G. Campbell, S. Nakielny, H. Hidaka, S. J. Leevers, C. Marshall, and P. Cohen. MAPKAP kinase-2: a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 11:3985–3994.
  • Sturgill, T. W., L. B. Ray, E. Erikson, and J. L. Mailer. 1988. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature (London) 334:715–718.
  • Taylor, S. S., D. R. Knighton, J. Zheng, J. M. Sowadski, C. S. Gibbs, and M. J. Zoller. 1993. A template for the protein kinase family. Trends Biochem. Sci. 18:84–89.
  • Thomas, S. M., M. DeMarco, G. D'Arcangelo, S. Halegoua, and J. S. Brugge. 1992. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68:1031–1040.
  • Traverse, S., N. Gomez, H. Paterson, C. Marshall, and P. Cohen. 1992. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation in PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288:351–355.
  • Troppmair, J., J. T. Binder, H. App, H. Cai, L. Liptak, J. Szeberenyi, G. M. Cooper, and U. R. Rapp. 1992. Ras controls coupling of growth factor receptors and protein kinase C in the membrane to Raf-1 and B-Raf protein serin kinases in the cytosol. Oncogene 7:1867–1873.
  • Tsuda, L., Y. H. Inoue, M. Yoo, M. Mizuno, M. Hata, Y. Lim, T. Adachi-Yamada, H. Ryo, Y. Massamune, and Y. Nishida. 1993. A protein kinase similar to MAP kinase activator acts downstream of the Raf kinase in drosophila. Cell 72:407–414.
  • Vouret-Craviari, V., E. Van Obberghen-Schilling, J. C. Schmeca, E. Van Obberghen, and J. Pouyssegur. 1993. Differential activation of p44MAPK (ERK1) by a-thrombin and throm-bin-receptor peptide agonist. Biochem. J. 289:209–214.
  • Wood, K. W., C. Sarnecki, T. M. Roberts, and J. Blenis. 1992. ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68:1041–1050.
  • Wu, J., J. K. Harrison, L. A. Vincent, C. Haystead, T. Haystead, H. Michel, D. Hunt, K. R. Lynch, and T. W. Sturgill. 1993. Molecular structure of a protein-tyrosine/threonine kinase activating p42 mitogen-activated protein (MAP) kinase: MAP kinase kinase. Proc. Natl. Acad. Sci. USA 90:173–177.
  • Wu, J., H. Michel, A. Rossomando, T. Haystead, J. Shabano-witz, D. F. Hunt, and T. W. Sturgill. 1992. Renaturation and partial peptide sequencing of mitogen-activated protein kinase (MAP kinase) activator from rabbit skeletal muscle. Biochem. J. 285:701–705.
  • Wu, J., A. J. Rossomando, J. H. Her, R. Del Vecchio, M. J. Weber, and T. W. Sturgill. 1991. Autophosphorylation in vitro of recombinant 42-kilodalton mitogen-activated protein kinase on tyrosine. Proc. Natl. Acad. Sci. USA 88:9508–9512.
  • Wu, J., and T. W. Sturgill. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.