14
Views
12
CrossRef citations to date
0
Altmetric
Gene Expression

The Destabilizing Elements in the Coding Region of c-fos mRNA Are Recognized as RNA

, &
Pages 5034-5042 | Received 15 Mar 1993, Accepted 12 May 1993, Published online: 31 Mar 2023

REFERENCES

  • Almendral, J. M., D. Somme, H. MacDonald-Bravo, J. Burckhardt, J. Perera, and R. Bravo. 1988. Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol. Cell. Biol. 8:2140–2148.
  • Atwater, J. A., R. Wisdom, and I. M. Verma. 1990. Regulated mRNA stability. Annu. Rev. Genet. 24:519–541.
  • Bandyopadhyay, R., M. Coutts, A. Krowczynska, and G. Brawerman. 1990. Nuclease activity associated with mammalian mRNA in its native state: possible basis for selectivity in mRNA decay. Mol. Cell. Biol. 10:2060–2069.
  • Bernstein, P., and J. Ross. 1989. Poly (A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 14:373–377.
  • Bernstein, P. L., D. J. Herrick, R. D. Prokipcak, and J. Ross. 1992. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev. 6:642–654.
  • Brawerman, G. 1989. mRNA decay: finding the right targets. Cell 57:9–10.
  • Caponigro, G., D. Muhlrad, and R. Parker. A small segment of the MATα1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol. Cell. Biol., in press.
  • Caput, D., B. Beutler, K. Hartog, R. Thayer, S. Brown-Shimer, and A. Cerami. 1986. Identification of a common nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83:1670–1674.
  • Chen, C.-Y. A., Y. You, and A.-B. Shyu. 1992. Two cellular proteins bind specifically to a purine-rich sequence necessary for the destabilization of a c-fos protein-coding determinant of mRNA instability. Mol. Cell. Biol. 12:5748–5757.
  • Curran, T., and B. R. Franza. 1988. Fos and Jun: the AP-1 connection. Cell 55:395–397.
  • Dani, C., J. M. Blanchard, M. Piechaczyk, S. E. Sabouty, L. Marty, and P. Jeanteur. 1984. Extreme instability of myc mRNA in normal and transformed human cells. Proc. Natl. Acad. Sci. USA 81:7046–7050.
  • Eckner, R., and M. L. Birnstiel. 1992. Evolutionary conserved multiprotein complexes interact with the 3' untranslated region of histone transcripts. Nucleic Acids Res. 20:1023–1030.
  • Edwards, D., and L. C. Mahadevan. 1992. Protein synthesis inhibitors differentially superinduce c-fos and c-jun by three distinct mechanisms: lack of evidence for labile repressors. EMBO J. 11:2415–2424.
  • Fort, P., J. Rech, A. Vie, M. Piechaczyk, A. Bonnieu, P. Jeanteur, and J.-M. Blanchard. 1987. Regulation of c-fos gene expression in hamster fibroblasts: initiation and elongation of transcription and mRNA degradation. Nucleic Acids Res. 15:5657–5667.
  • Greenberg, M. E., A. L. Hermanowski, and E. B. Ziff. 1986. Effect of protein synthesis inhibitors on growth factor activation of c-fos, c-myc, and actin gene transcription. Mol. Cell. Biol. 6:1050–1057.
  • Greenberg, M. E., A.-B. Shyu, and J. G. Belasco. 1990. Deade-nylylation: a mechanism controlling c-fos mRNA decay. Enzyme 44:181–192.
  • Greenberg, M. E., and E. B. Ziff. 1984. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature (London) 311:433–438.
  • Gribskov, M., J. Devereux, and R. R. Burgess. 1984. The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Res. 12:539–549.
  • Kabnick, K. S., and D. E. Housman. 1988. Determinants that contribute to cytoplasmic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA. Mol. Cell. Biol. 8:3244–3250.
  • Laird-Offringa, I. A. 1992. What determines the instability of c-myc proto-oncogene mRNA? BioEssays 14:119–124.
  • Laird-Offiinga, I. A., C. L. De Wit, P. Elfferich, and A. J. Van Der Eb. 1990. Pofy(A) tail shortening is the translation-dependent step in c-myc mRNA degradation. Mol. Cell. Biol. 10:6132–6140.
  • Lee, W. M., C. Lin, and T. Curran. 1988. Activation of the transforming potential of the human fos proto-oncogene requires message stabilization and results in increased amounts of partially modified fos protein. Mol. Cell. Biol. 8:5521–5527.
  • Linial, M., N. Gunerson, and M. Groudine. 1985. Enhanced transcription of c-myc in bursal lymphoma cells requires continuous protein synthesis. Science 230:1126–1132.
  • Meijlink, G. F., T. Curran, A. D. Miller, and I. M. Verma. 1985. Removal of a 67-base-pair sequence in the noncoding region of proto-oncogene fos converts it to a transforming gene. Proc. Natl. Acad. Sci. USA 82:4987–4991.
  • Pandey, N. B., J.-H. Sun, and W. F. Marzluff. 1991. Different complexes are formed on the 3' end of histone mRNA with nuclear and polyribosomal proteins. Nucleic Acids Res. 19:5653–5659.
  • Parker, R., and A. Jacobson. 1990. Translation and a 42-nucleotide segment with the coding region of the mRNA encoded by the MATal gene are involved in promoting rapid mRNA decay in yeast. Proc. Natl. Acad. Sci. USA 87:2780–2884.
  • Rahmsdorf, H. J., A. Schonthal, P. Angel, M. Litfin, U. Rüther, and P. Herrlich. 1987. Posttranscriptional regulation of c-fos mRNA expression. Nucleic Acids Res. 15:1643–1660.
  • Raymond, V., J. A. Atwater, and I. M. Verma. 1989. Removal of an mRNA destabilizing element correlates with the increased oncogenicity of proto-oncogene fos. Oncogene Res. 4:861–865.
  • Rivera, V. M., and M. E. Greenberg. 1990. Growth-induced gene expression: the ups and downs of c-fos regulation. New Biol. 2:751–758.
  • Ruther, U., D. Komitowski, F. R. Schubert, and E. F. Wagner. 1989. c-fos expression induces bone tumors in transgenic mice. Oncogene 4:861–865.
  • Savant-Bhonsale, S., and D. W. Cleveland. 1992. Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a >20S degradation complex. Genes Dev. 6:1927–1939.
  • Schiavi, S. C., C. L. Wellington, A.-B. Shyu, C.-Y. Chen, M. E. Greenberg, and J. G. Belasco. Multiple elements in the c-fos protein-coding region accelerate mRNA deadenylation and decay by a mechanism coupled to translation. Submitted for publication.
  • Shaw, G., and R. Kamen. 1986. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667.
  • Sheng, M., and M. E. Greenberg. 1990. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485.
  • Shyu, A.-B., J. G. Belasco, and M. E. Greenberg. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5:221–231.
  • Shyu, A.-B., M. E. Greenberg, and J. G. Belasco. 1989. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 3:60–72.
  • Theodorakis, N. G., and D. W. Cleveland. 1992. Physical evidence for cotranslational regulation of β-tubulin mRNA degradation. Mol. Cell. Biol. 12:791–799.
  • Treisman, R. 1985. Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5' element and c-fos 3' sequences. Cell 42:889–902.
  • Vakalopoulou, E., J. Schaack, and T. Shenk. 1991. A 32-kilodalton protein binds to AU-rich domains in the 3' untranslated regions of rapidly degraded mRNAs. Mol. Cell. Biol. 11:3355–3364.
  • Whittemore, L.-A., and T. Maniatis. 1990. Postinduction turnoff of beta-interferon gene expression. Mol. Cell. Biol. 64:1329–1337.
  • Wilson, T., and R. Treisman. 1988. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3' AU-rich sequences. Nature (London) 336:396–399.
  • Wisdom, R., and W. Lee. 1991. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 5:232–243.
  • Wolin, S. L., and P. Walter. 1988. Ribosomal pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 7:3559–3569.
  • Yen, T. J., P. S. Machlin, and D. W. Cleveland. 1988. Autoregu-lated instability of β-tubulin mRNAs by recognition of the nascent amino terminus of β-tubulin. Nature (London) 334:580–585.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.