1
Views
15
CrossRef citations to date
0
Altmetric
Gene Expression

Saccharomyces cerevisiae BUF Protein Binds to Sequences Participating in DNA Replication in Addition to Those Mediating Transcriptional Repression (URS1) and Activation

, , , , &
Pages 5749-5761 | Received 10 Feb 1993, Accepted 29 Jun 1993, Published online: 31 Mar 2023

REFERENCES

  • Bowdish, K. S., and A. P. Mitchell. 1993. Bipartite structure of an early meiotic upstream activation sequence in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:2172–2181.
  • Brand, A. H., G. Micklem, and K. Nasmyth. 1987. A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation. Cell 51:709–719.
  • Brill, S. J., and B. Stillman. 1991. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev. 5:1589–1600.
  • Buchman, A. R., W. J. Kimmerly, J. Rine, and R. D. Kornberg. 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:210–225.
  • Buchman, A. R., and R. D. Kornberg. 1990. A yeast ARS- binding protein activates transcription synergistically in combi-nation with other weak activating factors. Mol. Cell. Biol. 10:887–897.
  • Buchman, A. R., N. F. Lue, and R. D. Kornberg. 1988. Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA- binding protein. Mol. Cell. Biol. 8:5086–5099.
  • Burke, R. L., P. Tekamp-Olson, and R. Najarian. 1983. The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. J. Biol. Chem. 258:2193–2201.
  • Cohen, G., W. Rapatz, and H. Ruis. 1988. Sequence of the Saccharomyces cerevisiae CTAl gene and amino acid sequence of catalase A derived from it. Eur. J. Biochem. 176:159–163.
  • Cohen, R., T. Yokoi, J. P. Holland, A. E. Pepper, and Μ. J. Holland. 1987. Transcription of the constitutively expressed yeast enolase gene ENOl is mediated by positive and negative cis-acting regulatory sequences. Mol. Cell. Biol. 7:2753–2761.
  • Dorsman, J. C., W. C. VanHeeswijk, and L. A. Grivell. 1988. Identification of two factors which bind to the upstream sequences of a number of nuclear genes coding for mitochondrial proteins and to genetic elements important for cell division in yeast. Nucleic Acids Res. 16:7287–7301.
  • Eisenberg, S., C. Civalier, and B.-K. Tye. 1988. Specific interaction between a Saccharomyces cerevisiae protein and a DNA element associated with certain autonomously replicating sequences. Proc. Natl. Acad. Sci. USA 85:743–746.
  • Engebrecht, J., and G. S. Roeder. 1990. MER1, a yeast gene required for chromosome pairing and genetic recombination, is induced in meiosis. Mol. Cell. Biol. 10:2379–2389.
  • Falco, S. C., K. S. Dumas, and K. J. Livak. 1985. Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase. Nucleic Acids Res. 13:4011–4027.
  • Farabaugh, P., X.-B. Uao, Μ. Belcourt, H. Zhao, J. Kapakos, and J. Clare. 1989. Enhancer and silencerlike sites within the transcribed portion of a Ty2 transposable element of Saccharomyces cerevisiae. Mol. Cell. Biol. 9:4824–4834.
  • Goel, A., and R. E. Pearlman. 1988. Transposable element- mediated enhancement of gene expression in Saccharomyces cerevisiae involves sequence-specific binding of a trans-acting factor. Mol. Cell. Biol. 8:2572–2580.
  • Grayhack, E. J. 1992. The yeast 1 and MCMl proteins bind a single strand of their duplex DNA recognition site. Mol. Cell. Biol. 12:3573–3582.
  • Hamil, K. G., H. G. Nam, and H. Μ. Fried. 1988. Constitutive transcription of yeast ribosomal protein gene TCMl is promoted by uncommon cis- and trans-acting elements. Mol. Cell. Biol. 8:4328–4341.
  • Hartig, A∙, and H. Ruis. 1986. Nucleotide sequence of the Saccharomyces cerevisiae CTT1 gene and deduced amino-acid sequence of the yeast catalase T. Eur. J. Biochem. 160:487–490.
  • Helms, C., Μ. Y. Graham, J. E. Dutehick, and Μ. V. Olson. 1985. Laboratory methods. A new method for purifying lambda DNA from phage lysates. DNA 4:39–49.
  • Heyer, W. D., Μ. R. S Rao, L. F. Erdile, T. J. Kelly, and R. D. Kolodner. 1990. An essential Saccharomyces cerevisiae singlestranded DNA binding protein is homologous to the large subunit of human RP-A. EMBO J. 9:2321–2329.
  • Jarvis, E. E., K. L. Clark, and G. F. Sprague, Jr. 1989. The yeast transcription activator PRTF, a homolog of the mammalian serum response factor, is encoded by the MCM1 gene. Genes Dev. 3:936–945.
  • Keleher, C. A., S. Passmore, and A. D. Johnson. 1989. Yeast repressor 2 binds to its operator cooperatively with yeast protein MCMl. Mol. Cell. Biol. 9:5228–5230.
  • Klug, A., and D. Rhodes. 1987. “Zinc fingers”: a novel protein motif for nucleic acid recognition. Trends Biochem. Sci. 12:464–469.
  • Kovari, L., R. Sumrada, I. Kovari, and T. G. Cooper. 1990. Multiple positive and negative cis-acting elements mediate induced arginase (CAR1) gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:5087–5097.
  • Kovari, L. Z., and T. G. Cooper. 1991. Participation of ABF-1 protein in expression of the Saccharomyces cerevisiae CAR1 gene. J. BacterioL 173:6332–6338.
  • Kovari, L. Z., I. Kovari, and T. G. Cooper. 1992. Participation of the RAP1 protein in expression of the Saccharomyces cerevisiae arginase (CAR1) gene. J. Bacteriol. 175:941–951.
  • Kurtz, S., and D. Shore. 1991. RAP1 protein activates and silences transcription of mating-type genes in yeast. Genes Dev. 5:616–628.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Luche, R., J. Seyer, and T. G. Cooper. Unpublished observations.
  • Luche, R. Μ., W. C. Smart, and T. G. Cooper. 1992. Purification of the heteromeric protein binding to the URS1 transcriptional repression site in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89:7412–7416.
  • Luche, R. Μ., W. C. Smart, and T. G. Cooper. 1992. BUFI and BUF2 genes encode proteins that bind to the URSl site responsible for negative regulation of multiple yeast genes, p. 1–77A. Abstr. Annu. Meet. Yeast Genet. Mol. Biol.
  • Luche, R. Μ., R. Sumrada, and T. G. Cooper. 1990. A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene. Mol. Cell. Biol. 10:3884–3895.
  • Maine, G. T., P. Sinha, and B. K. Tye. 1984. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106:365–385.
  • Malavasic, Μ. J., and R. T. Elder. 1990. Complementary transcripts from two genes necessary for normal meiosis in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2809–2819.
  • Middlehoven, W. J. 1964. The pathway of arginine breakdown in Saccharomyces cerevisiae. Biochim. Biophys. Acta 93:650–652.
  • Middlehoven, W. J. 1968. The derepression of arginase and ornithine transaminase in nitrogen-starved baker’s yeast. Bio-chim. Biophys. Acta 156:440–443.
  • Middlehoven, W. J. 1969. Enzyme repression in the arginine pathway of Saccharomyces cerevisiae. Antonie van Leeuwenhoek J. Microbiol. Serol. 35:215–226.
  • Middlehoven, W. J. 1970. Induction and repression of arginase and ornithine transaminase in baker’s yeast. Antonie van Leeuwenhoek J. Microbiol. Serol. 36:1–19.
  • Morrison, A., H. Araki, A. B. Clark, R. K. Hamatake, and A. Sugino. 1990. A third essential DNA polymerase in 5. cerevisiae. Cell 62:1143–1151.
  • Nelson, H. B., and A. Laughon. 1990. The DNA binding specificity of the Drosophila fushi tarazu protein: a possible role for DNA bending in homeodomain recognition. New Biol. 2:171–178.
  • Park, H.-D., R. Μ. Luche, and T. G. Cooper. 1992. The yeast UME6 gene product is required for transcriptional repression mediated by the CAR1 URS1 repressor binding site. Nucleic Acids Res. 20:1909–1915.
  • Park, H.-O., and E. A. Craig. 1989. Positive and negative regulation of basal expression of a yeast HSP70 gene. Mol. Cell. Biol. 9:2025–2033.
  • Passmore, S., G. T. Maine, R. Elble, C. Christ, and B. K. Tye. 1988. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT cells. J. Mol. Biol. 204:593–606.
  • Rose, Μ. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Shore, D., D. J. Stillman, A. H. Brand, and K. A. Nasmyth. 1987. Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication. EMBO J. 6:461–467.
  • Stillman, D. J. Personal communication.
  • Stillman, D. J., A. T. Bankier, A. Seddon, E. G. Groenhout, and K. A. Nasmyth. 1988. Characterization of a transcription factor involved in mother cell specific transcription of the yeast HO gene. EMBO J. 7:485–194.
  • Sumrada, R., and T. G. Cooper. 1982. Isolation of the CAR1 gene from Saccharomyces cerevisiae and analysis of its expression. Mol. Cell. Biol. 2:1514–1523.
  • Sumrada, R., and T. G∙ Cooper. 1985. Point mutation generates constitutive expression of an inducible eukaryotic gene. Proc. Natl. Acad. Sci. USA 82:643–647.
  • Sumrada, R., and T. G. Cooper. 1987. Ubiquitous repression sequences control activation of inducible arginase gene in yeast. Proc. Natl. Acad. Sci. USA 84:3997–4001.
  • Sumrada, R. A., and T. G. Cooper. 1987. Sequences mediating induction and repression of the nitrogen catabolic genes in Saccharomyces cerevisiae, p. 111–123. In G. G. Stewart, I. Russell, R. D. Klein, and R. R. Hiebsch (ed.), Biological research on industrial yeasts, vol. II. CRC Press, Inc., Orlando, Fla.
  • Sussel, L., and D. Shore. 1991. Separation of transcriptional activation and silencing functions of the RAPl-encoded repres- sor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc. Natl. Acad. Sci. USA 88:7749–7753.
  • Tabor, S. 1990. Pages 16.2.1–16.2.11. In F. A. Ausubel, R. Brent, R. E. Kingston, D. D. M∞re, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology. Greene Publishing and Wiley Interscience, New York.
  • Tabor, S., and C. Richardson. 1987. DNA sequence analysis with modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 84:4767–4771.
  • Thompson, E. A., and G. S. Roeder. 1989. Expression and DNA sequence of REDI, a gene required for meiosis I chromosome segregation in yeast. Mol. Gen. Genet. 218:293–301.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Urban-Grimal, D., C. Volland, T. Garnier, P. Dehoux, and R. Labbe-Bois. 1986. The nucleotide sequence of the HEM1 gene and evidence for a precursor form of the mitochondrial 5-ami- nolevulinate synthase in Saccharomyces cerevisiae. Eur. J. Biochem. 156:511–519.
  • van Vuuren, H. J. J., J. R. Daugherty, R. Rai, and T. G. Cooper. 1991. Upstream induction sequence, the cis-acting element required for response to the allantoin pathway inducer and enhancement of operation of the nitrogen-regulated upstream activation sequence in Saccharomyces cerevisiae. J. Bacteriol. 173:7186–7195.
  • Vidal, Μ. A., Μ. Buckley, F. Hilger, and R. F. Gaber. 1990. Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae. Genetics 125:313–320.
  • Viljoen, Μ., L. Z. Kovari, I. A. Kovari, H. D. Park, H. J. J. van Vuuren, and T. G. Cooper. 1992. Tripartite structure of the Saccharomyces cerevisiae arginase (GAR1) gene inducer-responsive upstream activation sequence. J. Bacteriol. 174:6831–6839.
  • Walker, S. S., S. C. Francesconi, and S. Eisenberg. 1990. A DNA replication enhancer in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87:4665–4669.
  • Wang, H., and D. J. Stillman. 1990. In vitro regulation of a SIN3-dependent DNA-binding activity by stimulatory and inhibitory factors. Proc. Natl. Acad. Sci. USA 87:9761–9765.
  • Wiame, J. Μ. 1971. The regulation of arginine metabolism in Saccharomyces cerevisiae: exclusion mechanism. Curr. Top. Cell. Reg. 4:1–38.
  • Wright, C. F., and R. S. Zitomer. 1984. A positive regulatory site and a negative regulatory site control the expression of the Saccharomyces cerevisiae CYC7 gene. Mol. Cell. Biol. 4:2023–2030.
  • Young, R. A., and R. W. Davis. 1985. Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA 80:1194–1198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.