6
Views
10
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The RNA Polymerase I Transactivator Upstream Binding Factor Requires Its Dimerization Domain and High-Mobility-Group (HMG) Box 1 To Bend, Wrap, and Positively Supercoil Enhancer DNA

, , &
Pages 6476-6488 | Received 08 Jun 1994, Accepted 14 Jul 1994, Published online: 30 Mar 2023

REFERENCES

  • Bachvarov, D., and T. Moss. 1991. The RNA polymerase I transcription factor xUBF contains 5 tandemly repeated HMG homology boxes. Nucleic Acids Res. 19:2331–2335.
  • Bazett-Jones, D., B. Leblanc, M. Herfort, and T. Moss. 1994. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 264:1134–1137.
  • Bell, S. P., H.-M. Jantzen, and R. Tjian. 1990. Assembly of alternative multiprotein complexes directs rRNA promoter selectivity. Genes Dev. 4:943–954.
  • Bell, S. P., R. M. Learned, H.-M. Jantzen, and R. Tjian. 1988. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241:1192–1197.
  • Bell, S. P., C. S. Pikaard, R. H. Reeder, and R. Tjian. 1989. Molecular mechanisms governing species-specific transcription of ribosomal RNA. Cell 59:489–497.
  • Bianchi, M. E., L. Falciola, S. Ferrari, and D. M. Lilley. 1992. The DNA binding site of HMG1 protein is composed of two similar segments (HMG boxes), both of which have counterparts in other eukaryotic regulatory proteins. EMBO J. 11:1055–1063.
  • Clos, J., D. Buttgereit, and I. Gnimmt. 1986. A purified transcription factor (TIF-IB) binds to essential sequences of the mouse rDNA promoter. Proc. Natl. Acad. Sci. USA 83:604–608.
  • Comai, L., T. Naolo, and R. Tjian. 1992. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68:965–979.
  • Conconi, A., R. M. Widmer, T. Koller, and J. M. Sogo. 1989. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761.
  • Copenhaver, G. P., C. D. Putnam, M. L. Denton, and C. S. Pikaard. 1994. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Nucleic Acids Res. 22:2651–2657.
  • Denton, M. L., and C. S. Pikaard. Unpublished data.
  • Dunaway, M. 1989. A transcription factor, TFIS, interacts with both the promoter and the enhancers of Xenopus rRNA genes. Genes Dev. 3:1768–1778.
  • Dunaway, M., and P. Droge. 1989. Transactivation of the Xenopus rRNA gene promoter by its enhancer. Nature (London) 341:657–659.
  • Ferrari, S., V. R. Harley, A. Pontiggia, P. N. Goodfellow, B. R. Lovell, and M. E. Bianchi. 1992. SRY, like HMG1, recognizes sharp angles in DNA. EMBO J. 11:4497–4506.
  • Fischer, R. P., T. Lisowsky, M. A. Parisi, and D. A. Clayton. 1992. DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J. Biol. Chem. 267:3358–3367.
  • Friedman, D. I. 1988. Integration host factor: a protein for all reasons. Cell 55:545–554.
  • Giese, K., J. Cox, and R. Grosschedl. 1992. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69:185–195.
  • Hisatake, K., T. Nishimura, Y. Maeda, K. Hanada, C.-Z. Song, and M. Muramatsu. 1991. Cloning and structural analysis of cDNA and the gene for mouse transcription factor UBF. Nucleic Acids Res. 19:4631–1637.
  • Hu, C. Η., B. McStay, S. W. Jeong, and R. H. Reeder. 1994. xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity. Mol. Cell. Biol. 14:2871–2882.
  • Jantzen, H.-M., A. Admon, S. P. Bell, and R. Tjian. 1990. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature (London) 344:830–836.
  • Jantzen, H.-M., A. M. Chow, D. S. King, and R. Tjian. 1992. Multiple domains of the RNA polymerase I activator hUBF interact with the TATA-binding protein complex hSL1 to mediate transcription. Genes Dev. 6:1950–1963.
  • Javaherian, K., L. F. Liu, and J. C. Wang. 1978. Nonhistone protein HMG1 and HMG2 change the DNA helical structure. Science 199:1345–1346.
  • Kim, J. L., D. B. Nikolov, and S. K. Burley. 1993. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature (London) 365:520–527.
  • Kim, Y., J. H. Geiger, S. Hahn, and P. B. Sigler. 1993. Crystal structure of a yeast TBP/TATA-box complex. Nature (London) 365:512–520.
  • Kuhn, A., and I. Grummt. 1992. Dual role of the nucleolar transcription factor UBF: trans-activator and antirepressor. Proc. Natl. Acad. Sci. USA 89:7340–7344.
  • Kuhn, A., V. Stefanovsky, and I. Grummt. 1993. The nucleolar transcription activator UBF relieves Ku antigen-mediated repression of mouse ribosomal gene transcription. Nucleic Acids Res. 21:2057–2063.
  • Kuhn, A., R. Voit, V. Stefanovsky, V. R. Evers, M. Bianchi, and I. Grummt. 1994. Functional differences between the two splice variants of the nucleolar transcription factor UBF: the second HMG box determines specificity of DNA binding and transcriptional activity. EMBO J. 13:416–424.
  • Labhart, P., and R. H. Reeder. 1984. Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell 37:285–289.
  • Learned, R. M., S. Cordes, and R. Tjian. 1985. Purification and characterization of a transcription factor that confers promoter specificity to human RNA polymerase I. Mol. Cell. Biol. 5:1358–1369.
  • Leblanc, B., C. Read, and T. Moss. 1993. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involved multiple HMG box domains and leads to an xUBF interdomain interaction. EMBO J. 12:513–525.
  • Maeda, Y., K. Hisatake, T. Kondo, K.-I. Hanada, C.-Z. Song, J. Nishimura, and M. Muramatsu. 1992. Mouse rRNA gene transcription factor mUBF requires both HMG-box 1 and an acidic tail for nucleolar accumulation: molecular analysis of the nucleolar targeting mechanism. EMBO J. 11:3695–3704.
  • McStay, B., C. H. Hu, C. S. Pikaard, and R. H. Reeder. 1991. xUBF and Rib1 are both required for formation of a stable pol I promoter complex in X. laevis. EMBO J. 10:2297–2303.
  • McStay, B., M. W. Frazier, and R. H. Reeder. 1991. xUBF contains a novel dimerization domain essential for RNA polymerase I transcription. Genes Dev. 5:1957–1968.
  • Mishima, Y., I. Financsek, R. Kominami, and M. Muramatsu. 1982. Fractionation and reconstitution of factors required for accurate transcription of mammalian ribosomal RNA genes: identification of a species-dependant initiation factor. Nucleic Acids Res. 10:6659–6670.
  • O'Mahony, D. J., and L. I. Rothblum. 1991. Identification of two forms of the RNA polymerase I transcription factor UBF. Proc. Natl. Acad. Sci. USA 88:3180–3184.
  • O'Mahony, D. J., S. D. Smith, W. Xie, and L. I. Rothblum. 1992. Analysis of the phosphorylation, DNA-binding and dimerization properties of the RNA polymerase I transcription factors UBF1 and UBF2. Nucleic Acids Res. 20:1301–1308.
  • O'Mahony, D. J., W. Q. Xie, S. D. Smith, H. A. Singer, and L. I. Rothblum. 1992. Differential phosphorylation and localization of the transcription factor UBF in vivo in response to serum deprivation. In vitro dephosphorylation of UBF reduces its transactivation properties. J. Biol. Chem. 267:35–38.
  • Pape, L. K., J. J. Windle, E. B. Mougey, and B. Sollner-Webb. 1989. The Xenopus ribosomal DNA 60- and 81-base-pair repeats are position-dependent enhancers that function at the establishment of the preinitiation complex: analysis in vivo and an enhancer-responsive in vitro system. Mol. Cell. Biol. 9:5093–5104.
  • Pape, L. K., J. J. Windle, and B. Sollner-Webb. 1990. Half helical turn spacing changes convert a frog into a mouse rDNA promoter: a distant upstream domain determines the helix face of the initiation site. Genes Dev. 4:52–62.
  • Pauli, T. T., M. J. Haykinson, and R. C. Johnson. 1993. The nonspecific DNA-binding and bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 7:1521–1534.
  • Peck, L. J., and J. C. Wang. 1983. Energetics of B-to-Z transition in DNA. Proc. Natl. Acad. Sci. USA 80:6206–6210.
  • Pikaard, C. S. 1994. Ribosomal gene promoter domains can function as artificial enhancers of RNA polymerase I transcription, supporting a promoter origin for natural enhancers. Proc. Natl. Acad. Sci. USA 91:464–468.
  • Pikaard, C. S., B. McStay, M. C. Schultz, S. P. Bell, and R. H. Reeder. 1989. The Xenopus ribosomal gene enhancers bind an essential RNA polymerase I transcription factor, xUBF. Genes Dev. 3:1779–1788.
  • Pikaard, C. S., L. K. Pape, S. L. Henderson, K. Ryan, M. H. Paalman, M. Lopata, R. H. Reeder, and B. Sollner-Webb. 1990. Enhancers for RNA polymerase I in mouse ribosomal DNA. Mol. Cell. Biol. 10:4816–4825.
  • Pikaard, C. S., and R. H. Reeder. 1988. Sequence elements essential for function of the Xenopus laevis ribosomal DNA enhancers. Mol. Cell. Biol. 8:4282–4288.
  • Pikaard, C. S., S. D. Smith, R. H. Reeder, and L. I. Rothblum. 1990. rUBF, an RNA polymerase I transcription factor from rats, produces DNase I footprints identical to those produced by xUBF, its homolog in frogs. Mol. Cell. Biol. 10:3810–3812.
  • Pil, P. M., C. S. Chow, and S. J. Lippard. 1993. High-mobility-group 1 protein mediates DNA bending as determined by ring closures. Proc. Natl. Acad. Sci. USA 90:9465–9469.
  • Putnam, C. D., and C. S. Pikaard. 1992. Cooperative binding of the Xenopus RNA polymerase I transcription factor xUBF to repetitive ribosomal gene enhancers. Mol. Cell. Biol. 12:4970–4980.
  • Radebaugh, C. A., J. L. Matthews, G. K. Geiss, F. Liu, J. Wong, E. Bateman, S. Camier, A. Sentenac, and M. R. Paule. 1994. TATA-binding protein, TBP, is a constituent of the polymerase I-specific transcription initiation factor TIF-IB (SL1) bound to the rRNA promoter and shows differential sensitivity to TBP-directed reagents in polymerase I, II, and III transcription factors. Mol. Cell. Biol. 14:597–605.
  • Read, C. M., P. D. Cary, C. Crane-Robinson, P. C. Driscoll, and D. G. Norman. 1993. Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res. 21:3427–3436.
  • Reeder, R. H. 1992. Regulation of transcription by RNA polymerase I, p. 315–347. In S. L. McKnight, and K. R. Yamamoto (ed.), Transcriptional regulation Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rodrigo, R. M., M. C. Rendon, J. Torreblanca, G. Garcia-Herdugo, and F. J. Moreno. 1992. Characterization and immunolocalization of RNA polymerase I transcription factor UBF with anti-NOR serum in protozoa, higher plant and vertebrate cells. J. Cell Sci. 103:1053–1063.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schnapp, A., and I. Grummt. 1991. Transcription complex formation at the mouse rDNA promoter involves the stepwise association of four transcription factors and RNA polymerase I. J. Biol. Chem. 266:24588–24595.
  • Schnapp, A., H. Rosenbauer, and I. Grummt. 1991. Trans-acting factors involved in species-specificity and control of mouse ribosomal gene transcription. Mol. Cell. Biochem. 104:137–147.
  • Schnapp, G., F. Santori, C. Carles, M. Riva, and I. Grummt. 1994. The HMG-box containing nucleolar transcription factor UBF interacts with a specific subunit of RNA polymerase I. EMBO J. 13:190–194.
  • Shore, D., J. Langowski, and R. L. Baldwin. 1981. DNA flexibility studied by covalent closure of short fragments into circles. Proc. Natl. Acad. Sci. USA 78:4833–4837.
  • Smith, S. D., E. Oriahi, D. Lowe, Y. Yang, D. O'Mahony, K. Rose, K. Chen, and L. I. Rothblum. 1990. Characterization of factors that direct transcription of rat ribosomal DNA. Mol. Cell. Biol. 10:3105–3116.
  • Smith, S. D., E. Oriahi, Y. H. Yang, W. Q. Xie, C. Chen, and L. I. Rothblum. 1990. Interaction of RNA polymerase I transcription factors with a promoter in the nontranscribed spacer of rat ribosomal DNA. Nucleic Acids Res. 18:1677–1685.
  • Tanaka, N., H. Kato, Y. Ishikawa, K. Hisatake, K. Tashiro, R. Kominami, and M. Muramatsu. 1990. Sequence-specific binding of a transcription factor, TFID, to the promoter region of mouse ribosomal RNA gene. J. Biol. Chem. 265:13836–13842.
  • Tower, J., V. C. Culotta, and B. Sollner-Webb. 1986. Factors and nucleotide sequences that direct ribosomal DNA transcription and their relationship to the stable transcription complex. Mol. Cell. Biol. 6:3451–3462.
  • Van de Wetering, M., and H. Clevers. 1992. Sequence-specific interactions of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix. EMBO J. 11:3039–3044.
  • Verrijzer, C. P., J. A. W. N. van Oosterhout, W. W. van Weperen, and P. C. van der Vliet. 1991. POU proteins bend DNA via the POU-specific domain. EMBO J. 10:3007–3014.
  • Voit, R., A. Schnapp, A. Kuhn, H. Rosenbauer, P. Hirschmann, H. G. Stunnenberg, and I. Grummt. 1992. The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation. EMBO J. 11:2211–2218.
  • Weir, Η. M., P. J. Kraulis, C. S. Hill, A. R. C. Raine, E. D. Lau, and J. O. Thomas. 1993. Structure of the HMG box motif in the B-domain of HMG1. EMBO J. 12:1311–1319.
  • Xie, W. Q., and L. I. Rothblum. 1992. Domains of the rat rDNA promoter must be aligned stereospecifically. Mol. Cell. Biol. 12:1266–1275.
  • Yang, C.-C., and H. A. Nash. 1989. The interaction of E. coli IHF protein with its specific binding sites. Cell 57:869–880.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.