1
Views
3
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Calcium Inhibits Epidermal Growth Factor-Induced Activation of p21ras in Human Primary Keratinocytes

, , &
Pages 7078-7085 | Received 27 Apr 1994, Accepted 09 Aug 1994, Published online: 30 Mar 2023

References

  • Balmain, A., and I. B. Pragnell. 1983. Mouse skin carcinomas induced in vivo by chemical carcinogens have a transformed H-ras oncogene. Nature (London) 303:72–74.
  • Balmain, A., M. Ramsden, G. T. Bowden, and J. Smith. 1984. Activation of mouse cellular H-ras gene in chemically-induced benign skin papillomas. Nature (London) 307:658–660.
  • Bonfini, L., C. A. Karlovich, C. Dasgupta, and U. Banerjee. 1992. The Son of sevenless gene product: a putative activator of Ras. Science 255:603–606.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature (London) 348:125–132.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: conserved structure and molecular mechanism. Nature (London) 349:117–127.
  • Bowtell, D., P. Fu, M. Simon, and P. Senior. 1992. Identification of murine homologues of the Drosophila Son of sevenless gene: potential activators of ras. Proc. Natl. Acad. Sci. USA 89:6511–6515.
  • Boyce, S. T., and R. G. Ham. 1983. Calcium regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum free serial culture. J. Invest. Dermatol. 81:33s–40s.
  • Buday, L., and J. Downward. 1993. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adaptor protein, and SOS nucleotide exchange factor. Cell 73:611–620.
  • Buday, L., and J. Downward. 1993. Epidermal growth factor regulates the exchange rate of guanine nucleotides on p21ras in fibroblasts. Mol. Cell. Biol. 13:1903–1910.
  • Burgering, B. M. T., A. M. M. de Vries-Smits, R. H. Medema, P. C. van Weeren, L. G. J. Tertoolen, and J. L. Bos. 1993. Epidermal growth factor induces phosphorylation of extracellular signal-regulated kinase 2 via multiple pathways. Mol. Cell. Biol. 13:7248–7256.
  • Burgering, B. M. T., G. J. Pronk, P. C. van Weeren, P. Chardin, and J. L. Bos. 1993. cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSOS nucleotide exchange factor. EMBO J. 12:4211–4220.
  • Cobb, M. Η., T. G. Boulton, and D. J. Robbins. 1991. Extracellular signal-regulated kinases: ERKs in progress. Cell Regul. 2:965–978.
  • Cook, S. J., and F. McCormick. 1993. Inhibition by cAMP of Ras-dependent activation of Raf. Science 262:1069–1072.
  • Cook, S. J., B. Rubenfield, I. Albert, and F. McCormick. 1993. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12:3475–3485.
  • Crews, C. M., A. Alessandrini, and R. L. Erikson. 1992. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–480.
  • Dent, P., W. Haser, T. A. J. Haystead, L. A. Vincent, T. M. Roberts, and T. W. Sturgill. 1992. Activation of mitogen-activated protein kinase kinase by v-raf in NIH 3T3 cells and in vitro. Science 257:1404–1407.
  • de Vries-Smits, A. M. M., B. M. T. Burgering, S. J. Leevers, C. J. Marshall, and J. L. Bos. 1992. Involvement of p21ras in activation of extracellular signal-regulated kinase 2. Nature (London) 357:602–604.
  • Di Fiore, P. P., J. Falco, I. Borrello, B. Weissman, and S. A. Aaronson. 1988. The calcium signal for BALB/MK keratinocyte terminal differentiation counteracts epidermal growth factor (EGF) very early in the EGF-induced proliferative pathway. Mol. Cell. Biol. 8:557–563.
  • Downward, J., J. D. Graves, P. H. Warne, S. Rayter, and D. A. Cantrell. 1990. Stimulation of p21ras upon T-cell activation. Nature (London) 346:719–723.
  • Drozdoff, V., and W. J. Pledger. 1993. Commitment to differentiation and expression of early differentiation markers in murine keratinocytes in vitro are regulated independently of extracellular calcium concentrations. J. Cell Biol. 123:909–919.
  • Duden, R., and W. W. Franke. 1988. Organization of desmosomal plaque proteins in cells growing at low calcium concentrations. J. Cell Biol. 107:1049–1063.
  • Egan, S. E., B. W. Giddings, M. W. Brooks, L. Buday, A. M. Sizeland, and R. A. Weinberg. 1993. Association of SOS Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature (London) 363:45–51.
  • Feig, L. A., and G. M. Cooper. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8:3235–3243.
  • Filvaroff, E., E. Calautti, F. McCormick, and G. P. Dotto. 1992. Specific changes of Ras GTPase-activating protein (GAP) and a GAP-associated p62 protein during calcium-induced keratinocyte differentiation. Mol. Cell. Biol. 12:5319–5328.
  • Gale, N. W., S. Kaplan, E. J. Lowenstein, J. Schlessinger, and D. Bar-Sagi. 1993. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature (London) 363:88–92.
  • Gibbs, S., F. Lohman, W. Teubel, P. Van Der Putte, and C. Backendorf. 1990. Characterization of the human spr2 promoter: induction after UV irradiation or TPA treatment and regulation during differentiation of cultured human primary keratinocytes. Nucleic Acids Res. 18:4401–4407.
  • Gómez, N., and P. Cohen. 1991. Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature (London) 353:170–173.
  • Graves, L. M., K. E. Bornfeldt, E. W. Raines, B. C. Potts, S. G. MacDonald, R. Ross, and E. G. Krebs. 1993. Protein kinase A antagonizes platelet derived growth factor-induced signaling by mitogen activated protein kinase in human arterial smooth muscle cells. Proc. Natl. Acad. Sci. USA 90:10300–10304.
  • Hennings, H., D. Michael, C. Cheng, P. Steinert, K. Holbrook, and S. H. Yuspa. 1980. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254.
  • Hohl, D., U. Lichti, D. Breitkreutz, P. Steinert, and D. Roop. 1991. Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J. Invest. Dermatol. 96:414–418.
  • Howe, L. R., S. J. Leevers, N. Gomez, S. Nakielny, P. Cohen, and C. J. Marshall. 1992. Activation of the MAP kinase pathway by the protein kinase raf. Cell 71:335–342.
  • Kawata, M., Y. Matsui, J. Kondo, T. Hishida, Y. Teranishi, and Y. Takai. 1988. A novel small molecular weight GTP-binding protein with the same putative effector domain as the ras proteins in bovine brain membranes. J. Biol. Chem. 263:18965–18971.
  • Kitayama, Η., Y. Sugimoto, T. Matsuzaki, Y. Ikawa, and M. Noda. 1989. A ras-related gene with transformation suppressor activity. Cell 56:77–84.
  • Kyriakis, J. M., Η. App, X. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, and J. Avruch. 1992. Raf-1 activates MAP kinase-kinase. Nature (London) 358:417–421.
  • L'Allemain, G., J.-H. Her, J. Wu, T. W. Sturgill, and M. J. Weber. 1992. Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase. Mol. Cell. Biol. 12:2222–2229.
  • Li, N., A. Batzer, R. Daly, V. Yajnik, E. Skolnik, P. Chardin, D. Bar-Sagi, B. Margolis, and J. Schlessinger. 1993. Guaninenucleotide-releasing factor hSOS1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature (London) 363:85–88.
  • Marchese, C., J. Rubin, D. Ron, A. Faggioni, M. R. Torrisi, A. Messina, L. Frati, and S. A. Aaronson. 1990. Human keratinocyte growth factor activity on proliferation and differentiation of human keratinocytes: differentiation response distinguishes KGF from EGF family. J. Cell. Physiol. 144:326–332.
  • Medema, R. H., A. M. M. de Vries-Smits, G. C. M. van der Zon, J. A. Maassen, and J. L. Bos. 1993. Ras activation by insulin and epidermal growth factor through enhanced exchange of guanine nucleotides on p21ras. Mol. Cell. Biol. 13:155–162.
  • Moodie, S. A., B. M. Willumsen, M. J. Weber, and A. Wolfman. 1993. Complexes of Ras · GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260:1658–1661.
  • Pelicci, G., L. Lanfrancone, F. Grignani, J. McGlade, F. Cavallo, G. Forni, I. Nicoletti, F. Grignani, T. Pawson, and P. G. Pelicci. 1992. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93–104.
  • Pillai, S., D. D. Bikle, M.-L. Mancianti, P. Cline, and M. Hincenbergs. 1990. Calcium regulation of growth and differentiation of normal human keratinocytes: modulation of differentiation competence by stages of growth and extracellular calcium. J. Cell. Physiol. 143:294–302.
  • Pittelkow, M. R., J. J. Wille, Jr., and R. E. Scott. 1986. Two functionally distinct classes of growth arrest states in human prokeratinocytes that regulate clonogenic potential. J. Invest. Dermatol. 86:410–417.
  • Pizon, V., P. Chardin, I. Lerosey, B. Olofsson, and A. Tavitian. 1988. Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the ‘effector’ region. Oncogene 3:201–204.
  • Ponec, M., J. A. Kempenaar, and E. R. de Kloet. 1981. Corticoids and cultured human epidermal keratinocytes: specific intracellular binding and clinical efficacy. J. Invest. Dermatol. 76:211–214.
  • Pronk, G. J., A. M. M. de Vries-Smits, L. Buday, J. Downward, J. A. Maassen, R. H. Medema, and J. L. Bos. 1994. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Mol. Cell. Biol. 14:1575–1581.
  • Ray, L. B., and T. W. Sturgill. 1988. Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc. Natl. Acad. Sci. USA 85:3753–3757.
  • Read, J., and F. M. Watt. 1988. A model for in vitro studies of epidermal homeostasis: proliferation and involucrin synthesis by cultured human keratinocytes during recovery after stripping off the suprabasal layers. J. Invest. Dermatol. 90:739–743.
  • Rheinwald, J. G., and H. Green. 1977. Epidermal growth factor and the multiplication of cultured epidermal keratinocytes. Nature (London) 265:421–424.
  • Rozakis-Adcock, M., R. Femley, J. Wade, T. Pawson, and D. Bowtell. 1993. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSOS1. Nature (London) 363:83–85.
  • Shipley, G. D., and M. R. Pittelkow. 1987. Control of growth and differentiation in vitro of human keratinocytes cultured in serum-free medium. Arch. Dermatol. 123:1541a–1544a.
  • Tsao, M. C., B. J. Walthall, and R. G. Ham. 1982. Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell. Physiol. 110:219–229.
  • Van Aelst, L., M. Bar, S. Marcus, A. Polverino, and M. Wigler. 1993. Complex formation between ras and raf and other protein kinases. Proc. Natl. Acad. Sci. USA 90:6213–6217.
  • Vojtek, A. B., S. M. Hollenberg, and J. A. Cooper. 1993. Mammalian ras interacts directly with the serine/threonine kinase raf. Cell 74:205–214.
  • Warne, P. Η., P. B. Viciana, and J. Downward. 1993. Direct interaction of ras and the amino terminal region of raf-1 in vitro. Nature (London) 364:352–355.
  • Watt, F. M., D. L. Matte, and D. R. Garde. 1984. Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J. Cell Biol. 98:16–21.
  • Wilke, M. S., B. M. Hsu, J. J. Wille, M. R. Pittelkow, and R. E. Scott. 1988. Biologic mechanisms for the regulation of normal human keratinocyte proliferation and differentiation. Am. J. Pathol. 131:171–181.
  • Wille, J. J., M. R. Pittelkow, G. D. Shipley, and R. E. Scott. 1984. Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analysis, growth kinetics and cell cycle studies. J. Cell. Physiol. 121:31–44.
  • Wu, J., P. Dent, T. Jelinek, A. Wolfman, M. J. Weber, and T. W. Sturgill. 1993. Inhibition of the EGF-activated Map kinase signal pathway by adenosine 3′,5′-monophosphate. Science 262:1065–1069.
  • Zhang, X. F., J. Settleman, J. M. Kyriakis, E. Takeuchi-Suzuki, S. Elledge, M. S. Marshall, J. S. Bruder, U. R. Rapp, and J. Avruch. 1993. Normal and oncogenic p21ras proteins bind to the amino terminal regulatory domain of c-raf-1. Nature (London) 364:308–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.