14
Views
9
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Selection of New HSF1 and HSF2 DNA-Binding Sites Reveals Differences in Trimer Cooperativity

&
Pages 7592-7603 | Received 07 Jul 1994, Accepted 24 Aug 1994, Published online: 30 Mar 2023

References

  • Abravaya, K., B. Phillips, and R. I. Morimoto. 1991. Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting. Mol. Cell. Biol. 11:586–592.
  • Amin, J., J. Ananthan, and R. Voellmy. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761–3769.
  • Amin, J., M. Fernandez, J. Ananthan, J. T. Lis, and R. Voellmy. 1994. Cooperative binding of heat shock transcription factor to the HSP70 promoter in vivo and in vitro. J. Biol. Chem. 269:4804–4811.
  • Ashburner, M. 1970. Pattern of puffing activity in the salivary gland chromosomes of Drosophila. V. Response to environmental treatments. Chromosoma 31:356–376.
  • Baler, R., G. Dahl, and R. Voellmy. 1993. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol. 13:2486–2496.
  • Becker, P. B., S. K. Rabindran, and C. Wu. 1991. Heat shock-regulated transcription in vitro from a reconstituted chromatin template. Proc. Natl. Acad. Sci. USA 88:4109–4113.
  • Blackwell, T. K., and H. Weintraub. 1990. Differences and similarities in DNA-binding preferences of myoD and E2A protein complexes revealed by binding site selection. Science 250:1104–1110.
  • Bonner, J. J., C. Ballou, and D. L. Fackenthal. 1994. Interactions between DNA-bound trimers of the yeast heat shock factor. Mol. Cell. Biol. 14:501–508.
  • Capdevila, M. D., and A. Garcia-Bellido. 1974. Development and genetic analysis of bithorax phenocopies in Drosophila. Nature (London) 250:500–502.
  • Cunniff, N. F. A., and W. D. Morgan. 1993. Analysis of heat shock element recognition by saturation mutagenesis of the human HSP70.1 gene promoter. J. Biol. Chem. 268:8317–8324.
  • Dynan, W. S. 1987. Dnase I footprinting as an assay for mammalian gene regulatory proteins, p. 75–87. In J. Setlow (ed.), Genetic engineering: principles and methods, vol. 9. Plenum Press, New York.
  • Fernandes, M., H. Xiao, and J. T. Lis. 1994. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor—heat shock element interactions. Nucleic Acids Res. 22:167–173.
  • Galang, C. K., and C. A. Hauser. 1993. Cooperative DNA binding of the human hoxB5 (hox-2.1) protein is under redox regulation in vitro. Mol. Cell. Biol. 13:4609–4617.
  • Hickey, E., S. E. Brandon, G. Smale, D. Lloyd, and L. A. Weber. 1989. Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein. Mol. Cell. Biol. 9:2615–2626.
  • Higuchi, R., B. Krummel, and R. K. Saiki. 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16:7351–7367.
  • Kingston, R. E., T. J. Schuetz, and Z. Larin. 1987. Heat-inducible human factor that binds to a human hsp70 promoter. Mol. Cell. Biol. 7:1530–1534.
  • Ko, L. J., and J. D. Engel. 1993. DNA-binding specificities of the GATA transcription factor family. Mol. Cell. Biol. 13:4011–4022.
  • Kroeger, P. E., K. D. Sarge, and R. I. Morimoto. 1993. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol. Cell. Biol. 13:3370–3383.
  • Letovsky, J., and W. S. Dynan. 1989. Measurement of the binding of transcription factor Sp1 to a single GC box. Nucleic Acids Res. 17:2639–2653.
  • Merika, M., and S. H. Orkin. 1993. DNA-binding specificity of GATA family transcription factors. Mol. Cell. Biol. 13:3999–4010.
  • Morimoto, R. I. 1992. Transcriptional regulation of heat shock genes: a paradigm for inducible genomic responses. J. Biol. Chem. 267:21987–21990.
  • Morimoto, R. I. 1993. Chaperoning the nascent polypeptide chain. Curr. Biol. 3:101–102.
  • Mosser, D. D., N. G. Theodorakis, and R. I. Morimoto. 1988. Coordinate changes in heat shock element-binding activity and hsp70 gene transcription rates in human cells. Mol. Cell. Biol. 8:4736–4744.
  • Nakai, A., and R. I. Morimoto. 1993. Characterization of a novel chicken heat shock transcription factor, HSF3, suggests a new regulatory pathway. Mol. Cell. Biol. 13:1983–1997.
  • Perisic, Ο., H. Xiao, and J. T. Lis. 1989. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59:797–806.
  • Pollack, R., and R. Treisman. 1990. A sensitive method for the determination of protein-DNA binding specificities. Nucleic Acids Res. 18:6197–6204.
  • Rabindran, S. K., G. Giorgi, J. Clos, and C. Wu. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88:6906–6910.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sarge, K. D., S. P. Murphy, and R. I. Morimoto. 1993. Activation of heat shock gene transcription by HSF1 involves oligomerization, acquisition of DNA binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13:1392–1407.
  • Sarge, K. D., V. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5:1902–1911.
  • Scharf, K.-D., S. Rose, W. Zott, F. Schoff, and L. Nover. 1990. Three tomato genes code for heat stress transcription factors with a remarkable degree of homology to the DNA-binding domain of the yeast HSF. EMBO J. 9:4495–4501.
  • Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88:6910–6915.
  • Shuey, D. J., and C. S. Parker. 1986. Binding of Drosophila heat-shock transcription factor to the hsp 70 promoter: evidence for symmetric and dynamic interactions. J. Biol. Chem. 261:7934–7940.
  • Sistonen, L., K. D. Sarge, and R. Morimoto. 1994. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell. Biol. 14:2087–2099.
  • Sistonen, L., K. D. Sarge, B. Phillips, K. Abravaya, and R. Morimoto. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell. Biol. 12:4104–4111.
  • Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793–805.
  • Sorger, P. K., and H. R. B. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864.
  • Taylor, I. C. A., J. L. Workman, T. J. Schuetz, and R. E. Kingston. 1991. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 5:1285–1298.
  • Westwood, J. T., J. Clos, and C. Wu. 1991. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature (London) 353:822–827.
  • Wu, C., S. Wilson, B. Walker, I. Dawid, T. Paisley, V. Zimarino, and H. Ueda. 1987. Purification and properties of Drosophila heat shock activator protein. Science 238:1247–1253.
  • Xiao, H., and J. T. Lis. 1988. Germline transformation used to define key features of the heat shock response element. Science 239:1139–1142.
  • Xiao, H., O. Perisic, and J. T. Lis. 1991. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64:585–593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.