11
Views
40
CrossRef citations to date
0
Altmetric
Gene Expression

AUUUA Is Not Sufficient To Promote Poly(A) Shortening and Degradation of an mRNA: the Functional Sequence within AU-Rich Elements May Be UUAUUUA(U/A)(U/A)

, &
Pages 7984-7995 | Received 22 Mar 1994, Accepted 13 Jul 1994, Published online: 30 Mar 2023

References

  • Aghib, D. F., J. M. Bishop, S. Ottolenghi, A. Guerrasio, A. Serra, and G. Saglio. 1990. A 3′ truncation of MYC caused by chromosomal translocation in a human T-cell leukemia increases mRNA stability. Oncogene 5:707–711.
  • Aharon, T., and R. J. Schneider. 1993. Selective destabilization of short-lived mRNAs with the granulocyte-macrophage colony-stimulating factor AU-rich 3′ noncoding region is mediated by a cotranslational mechanism. Mol. Cell. Biol. 13:1971–1980.
  • Ahern, S. M., T. Miyata, and J. E. Sadler. 1993. Regulation of human tissue factor expression by mRNA turnover. J. Biol. Chem. 268:2154–2159.
  • Akashi, M., A. H. Loussararian, D. C. Adelman, M. Saito, and H. P. Koeffler. 1990. Role of lymphotoxin in expression of inter-leukin 6 in human fibroblasts. Stimulation and regulation. J. Clin. Invest. 85:121–129.
  • Astrom, J., A. Astrom, and A. Virtanen. 1992. Properties of a HeLa cell 3′ exonuclease specific for degrading poly(A) tails of mammalian mRNA. J. Biol. Chem. 267:18154–18159.
  • Belasco, J., and G. Brawerman. 1993. Control of messenger RNA stability. Academic Press, San Diego, Calif.
  • Bernstein, P., S. W. Peltz, and J. Ross. 1989. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol. 9:659–670.
  • Bickel, M., I. Yoshitaka, D. H. Pluznik, and R. B. Cohen. 1992. Binding of sequence-specific proteins to the adenosine- plus uridine-rich sequences of the murine granulocyte/macrophage colony-stimulating factor mRNA. Proc. Natl. Acad. Sci. USA 89:10001–10005.
  • Binder, R., S.-P. L. Hwang, R. Ratnasabapathy, and D. L. Williams. 1989. Degradation of apolipoprotein II mRNA occurs via endonucleolytic cleavage at 5′-AAU-3′/5′-UAA-3′ elements in single-stranded loop domains of the 3′-noncoding region. J. Biol. Chem. 264:16910–16918.
  • Bohjanen, P. R., B. Petryniak, C. H. June, C. B. Thompson, and T. Lindsten. 1992. AU RNA-binding factors differ in their binding specificities and affinities. J. Biol. Chem. 267:6302–6309.
  • Brawerman, G. 1989. mRNA Decay: finding the right targets. Cell 57:9–10.
  • Brewer, G., and J. Ross. 1988. Poly(A) shortening and degradation of the 3′ -A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol. Cell. Biol. 8:1697–1708.
  • Brown, B. D., I. D. Zipkin, and R. M. Harland. 1993. Sequence-specific endonucleolytic cleavage and protection of mRNA in Xenopus and Drosophila. Genes Dev. 7:1620–1631.
  • Brown, C. Y., C. A. Lagnado, and G. J. Goodall. Unpublished data.
  • Caput, D., B. Beutler, K. Hartog, R. Thayer, S. Brown-Shimer, and A. Cerami. 1986. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83:1670–1674.
  • Casey, J. L., D. M. Koeller, V. C. Ramin, R. D. Klausner, and J. B. Harford. 1989. Iron regulation of transferrin receptor mRNA levels requires iron-responsive elements and a rapid turnover determinant in the 3′ untranslated region of the mRNA. EMBO J. 8:3693–3699.
  • Chen, C.-Y. A., T.-M. Chen, and A.-B. Shyu. 1994. Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function. Mol. Cell. Biol. 14:416–426.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Cosman, D. 1987. Control of messenger RNA stability. Immunol. Today 8:16–17.
  • Coutts, M., and G. Brawerman. 1993. A 5′ exoribonuclease from cytoplasmic extracts of mouse sarcoma 180 ascites cells. Biochim. Biophys. Acta 1173:57–62.
  • Decker, C. J., and R. Parker. 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7:1632–1643.
  • Gillis, P., and J. S. Malter. 1991. The adenosine-uridine binding factor recognizes the AU-rich elements of cytokine, lymphokine, and oncogene mRNAs. J. Biol. Chem. 266:3172–3177.
  • Goodall, G. J., and W. Filipowicz. 1989. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58:473–483.
  • Hamilton, B. J., E. Nagy, J. S. Malter, B. A. Arrick, and W. F. C. Rigby. 1993. Association of heterogeneous nuclear ribonucleoprotein A1 and C proteins with reiterated AUUUA sequences. J. Biol. Chem. 268:8881–8887.
  • Helms, S. R., and F. M. Rottman. 1990. Characterization of an inducible promoter system to investigate decay of stable mRNA molecules. Nucleic Acids Res. 18:255–259.
  • Hollis, G. F., A. F. Gazdar, V. Bertness, and I. R. Kirsch. 1988. Complex translocation disrupts c-myc regulation in a human plasma cell myeloma. Mol. Cell. Biol. 8:124–129.
  • Huang, L.-Y., B. G. Tholanikunnel, E. Vakalopoulou, and C. C. Malbon. 1993. The Mr 35,000 β-adrenergic receptor mRNA-binding protein induced by agonists requires both an AUUUA pentamer and U-rich domains for RNA recognition. J. Biol. Chem. 268:25769–25775.
  • Jackson, R. J., and N. Standart. 1990. Do the poly(A) tail and 3′ untranslated region control mRNA translation? Cell 62:15–24.
  • Jones, T. R., and M. D. Cole. 1987. Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3′ untranslated sequences. Mol. Cell. Biol. 7:4513–4521.
  • Kabnick, K. S., and D. E. Housman. 1988. Determinants that contribute to cytoplasmic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA. Mol. Cell. Biol. 8:3244–3250.
  • Koeffler, H. P., J. Gasson, and A. Tobler. 1988. Transcriptional and posttranscriptional modulation of myeloid colony-stimulating factor expression by tumor necrosis factor and other agents. Mol. Cell. Biol. 8:3432–3438.
  • Kowalski, J., and D. T. Denhardt. Regulation of the mRNA for monocyte-derived neutrophil-activating peptide in differentiating HL60 promyelocytes. Mol. Cell. Biol. 9:1946–1957.
  • Lagnado, C. A., and G. J. Goodall. Unpublished data.
  • Laird-Offringa, I. A., C. L. de Wit, P. Elfferich, and A. J. van der Eb. 1990. Poly(A) tail shortening is the translation-dependent step in c-myc mRNA degradation. Mol. Cell. Biol. 10:6132–6140.
  • Lieberman, A. P., P. M. Pitha, and M. L. Shin. 1992. Poly(A) removal is the kinase-regulated step in tumor necrosis factor mRNA decay. J. Biol. Chem. 267:2123–2126.
  • Lowell, J. E., D. Z. Rudner, and A. B. Sachs. 1992. 3 -UTR-dependent deadenylation by the yeast poly(A) nuclease. Genes Dev. 6:2088–2099.
  • Meijlink, F., T. Curran, A. D. Miller, and I. M. Verma. 1985. Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene. Proc. Natl. Acad. Sci. USA 82:4987–4991.
  • Muhlrad, D., and R. Parker. 1992. Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev. 6:2100–2111.
  • Paek, I., and R. Axel. 1987. Glucocorticoids enhance stability of human growth hormone mRNA. Mol. Cell. Biol. 7:1496–1507.
  • Pandey, N. B., and W. F. Marzluff. 1987. The stem-loop structure at the 3′ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell. Biol. 7:4557–4559.
  • Peppel, K., and C. Baglioni. 1991. Deadenylation and turnover of interferon-β mRNA. J. Biol. Chem. 266:6663–6666.
  • Raj, N. B. K., and P. M. Pitha. 1993. 65-kDa protein binds to destabilizing sequences in the IFN-β mRNA coding and 3′UTR. FASEB J. 7:702–710.
  • Sachs, A. B. 1993. Messenger RNA degradation in eukaryotes. Cell 74:413–421.
  • Schiavi, S. C., J. G. Belasco, and M. E. Greenberg. 1992. Regulation of proto-oncogene mRNA stability. Biochim. Biophys. Acta 1114:95–106.
  • Shaw, G., and R. Kamen. 1986. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667.
  • Shaw, J., K. Meerovitch, R. C. Bleackley, and V. Paetkau. 1988. Mechanisms regulating the level of IL-2 mRNA in T lymphocytes. J. Immunol. 140:2243–2248.
  • Shyu, A.-B., J. G. Belasco, and M. E. Greenberg. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5:221–231.
  • Shyu, A.-B., M. E. Greenberg, and J. G. Belasco. 1989. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 3:60–72.
  • Stoeckle, M. Y., and L. Guan. 1993. High-resolution analysis of gro α poly(A) shortening: regulation by interleukin-1β. Nucleic Acids Res. 21:1613–1617.
  • Vakalopoulou, E., J. Schaack, and T. Shenk. 1991. A 32-kilodalton protein binds to AU-rich domains in the 3′ untranslated regions of rapidly degraded mRNAs. Mol. Cell. Biol. 11:3355–3364.
  • Vreken, P., and H. A. Raue. 1992. The rate-limiting step in yeast PGK1 mRNA degradation is an endonucleolytic cleavage in the 3′-terminal part of the coding region. Mol. Cell. Biol. 12:2986–2996.
  • Whittemore, L.-A., and T. Maniatis. 1990. Postinduction turnoff of beta-interferon gene expression. Mol. Cell. Biol. 10:1329–1337.
  • Wilson, T., and R. Treisman. 1988. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature (London) 336:396–399.
  • Wisdom, R., and W. Lee. 1991. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 5:232–243.
  • You, Y., C.-Y. A. Chen, and A.-B. Shyu. 1992. U-rich sequence-binding proteins (URBPs) interacting with a 20-nucleotide U-rich sequence in the 3′ untranslated region of c-fos mRNA may be involved in the first step of c-fos mRNA degradation. Mol. Cell. Biol. 12:2931–2940.
  • Zhang, W., B. J. Wagner, K. Ehrenman, A. W. Schaefer, C. T. deMaria, D. Crater, K. deHaven, L. Long, and G. Brewer. 1993. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell. Biol. 13:7652–7665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.